matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegrierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Integrierbarkeit
Integrierbarkeit < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit: argumentation
Status: (Frage) beantwortet Status 
Datum: 15:34 Mo 18.05.2015
Autor: Mapunzel

Aufgabe
Es sei f eine nicht negative messbare numerische Funktion auf einem [mm] Maßraum\left(\Omega, \mathcal{A}, \mu\right) [/mm] mit [mm] \mu\left(\Omega\right)<\infty. [/mm] Zeigen Sie:
(a) Nimmt die Funnktion nur ganzzahlige Werte an, so gilt [mm] \integral{f d\mu}= \sum_{n=1}^{\infty}{\mu\left(f\ge n\right)} [/mm]
(b) Die Funktion f (nicht notwendigerweise ganzzahlig) ist genau dann [mm] \mu-integrierbar, [/mm] wenn [mm] $$\sum_{n=1}^{\infty}{\mu\left(f\ge n\right)}<\infty$$ [/mm] gilt.
(c) Aus(a) folgt [mm] \limes_{n\rightarrow\infty}n\mu\left(f\ge n\right) [/mm] = 0

Hallo, ich habe die Fragen alle bearbeitet und möchte gerne wissen ob meine Ideen richtig sind bzw an ein paar Stellen fehlen mir noch Argumentationsschritte. Zu (a) habe ich geschrieben, dass f = [mm] \sum_{n\in\IN}{a_n\mathbf{1}_{A_n}} [/mm] mit [mm] a_n\in\mathbb{Z}^{+} [/mm] und [mm] A_n=\{a_n^{-1}\}\in\mathcal{A}, [/mm] weil es ja eine einfache Funktion ist und dann folgt per Def. [mm] \integral{f d\mu} [/mm] = [mm] \sum_{n\in\IN}{a_n\mu\left(A_n\right)} [/mm] = [mm] \sum_{n\in\IN}{a_n\mu\left(f=a_n\right)}=\sum_{n\in\IN}{n\mu\left(f=n\right)}=\sum_{n\in\IN}{\mu\left(f\ge n\right)} [/mm]
Denke das sollte soweit ok sein. Bei (b) bin ich mir unsicher ob das in beide Richtungen gleichzeitig funktioniert(und ob es überhaupt funktioniert):
[mm] \sum_{n=1}^{\infty}{\mu\left(f\ge n\right)}<\infty \gdw \sum_{n=1}^{\infty}{\mu\left(\lceil f\rceil\ge n\right)}<\infty \gdw \sum_{n=1}^{\infty}{\mu\left(\lceil f\rceil\ge n\right)}<\infty [/mm] = [mm] \integral{\lceil f\rceil d\mu} [/mm] < [mm] \infty \gdw \integral{f d\mu} [/mm] < [mm] \infty [/mm]
Dabei hab ich Aufgabenteil 1 und die Monotonie benutzt.
bei (c) kann man denk ich sagen dass [mm] \mu\left(f\ge n\right) [/mm] < [mm] \frac{1}{n} [/mm]  sein muss da wir von der zugehörgien Reihe wissen, dass sie divergiert. Somit geht der Grenzwert gegen 0.
Danke für eure Mühe, mfg

        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Mi 20.05.2015
Autor: Gonozal_IX

Hiho,

vorweg: Deine Ideen sind allesamt richtig, ein paar kleinere Korrekturen hab ich jedoch:

> f = [mm]\sum_{n\in\IN}{a_n\mathbf{1}_{A_n}}[/mm] mit
> [mm]a_n\in\mathbb{Z}^{+}[/mm] und [mm]A_n=\{a_n^{-1}\}\in\mathcal{A},[/mm]

Du meinst statt [mm] a_n^{-1} [/mm] sicherlich [mm] $f^{-1}(a_n)$. [/mm]
Dann: Schreibe doch gleich $f = [mm][mm] \sum_{n\in\IN}{n\mathbf{1}_{A_n}}$ [/mm] mit [mm] $A_n [/mm] = [mm] f^{-1}(n)$ [/mm]

> Bei (b) bin ich mir unsicher ob das in beide Richtungen gleichzeitig funktioniert

Nein tut es nicht, bspw. schreibst du:
[mm]\sum_{n=1}^{\infty}{\mu\left(f\ge n\right)}<\infty \gdw \sum_{n=1}^{\infty}{\mu\left(\lceil f\rceil\ge n\right)}<\infty[/mm]

[mm] $\Rightarrow$ [/mm] ist klar [mm] $\Leftarrow$ [/mm] muss aber gar nicht gelten.
Deine Idee Funktioniert aber trotzdem, wenn du für eine Richtung der "genau dann, wenn" - Aussage [mm] $\lceil f\rceil$ [/mm] benutzt und für die andere [mm] $\lfloor f\rfloor$. [/mm]
Für welche was findest du bestimmt raus ;-)

>  bei (c) kann man denk ich sagen dass [mm]\mu\left(f\ge n\right)[/mm] < [mm]\frac{1}{n}[/mm]  sein muss da wir von der zugehörgien Reihe wissen, dass sie divergiert.

Erstmal: So für alle n kannst du diese Aussage nicht treffen. Nur, dass es "ab und an" Folgenglieder gibt, für die das gelten muss. (Ein schönes Gegenbeispiel findest du hier, bei dem der harmonischen Reihe ein "paar" Summanden entfernt wird und schon konvergiert sie.)

Aber auch hier ist deine Idee durchaus verwertbar: Nimm mal an [mm] $n(f\ge [/mm] n)$ würde nicht gegen 0 gehen, schreibe dir die Definition davon auf und verwende das dann um gegen die harmonische Reihe abzuschätzen.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]