matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegrierbare Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Integrierbare Funktionen
Integrierbare Funktionen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbare Funktionen: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:12 So 01.06.2008
Autor: ToniKa

Aufgabe
Angenommen, f, g : [0, 1]  [mm] \to [/mm] R seien integrierbare Funktionen. Zeigen
Sie, daß:
(a) f · g : [0, 1] [mm] \to [/mm] R,
(wobei f · g(x) = f(x)g(x), f¨ur alle x  [mm] \in[0, [/mm] 1])
auch integrierbar ist,
(b) max{f, g} : [0, 1] [mm] \to [/mm] R,
(wobei max{f, g}(x) = max{f(x), g(x)} f¨ur alle x  [mm] \in[0, [/mm] 1]),
auch integrierbar ist.

Hallo an alle!
Ich habe eine  konkrete Frage zum 1. Teil der Aufgabe und zwar, wie kann man den folgenden Satz verstehen?
fg kann als Linearkombination
von Quadraten integrierbarer Funktionen geschrieben werden, denn 2fg = [mm] (f+g)^2-f^2-g^2. [/mm]
Daher ist auch fg integrierbar. Also ich verstehe nicht, wie man diese Gleichung bekommt? Und ob ich die für meinen Beweis überhaupt brauche?

Was brauche ich überhaupt für die Lösung der Aufgabe? monotonie, Linearität des Riemann-Integrals oder Dreiecksungleichung?

Ich würde mich auf jeden Tipp von euch freuen!!!
Danke im voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integrierbare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 So 01.06.2008
Autor: Merle23


> Angenommen, f, g : [0, 1]  [mm]\to[/mm] R seien integrierbare
> Funktionen. Zeigen
>  Sie, daß:
>  (a) f · g : [0, 1] [mm]\to[/mm] R,
>  (wobei f · g(x) = f(x)g(x), f¨ur alle x  [mm]\in[0,[/mm] 1])
>  auch integrierbar ist,
>  (b) max{f, g} : [0, 1] [mm]\to[/mm] R,
>  (wobei max{f, g}(x) = max{f(x), g(x)} f¨ur alle x  [mm]\in[0,[/mm]
> 1]),
>  auch integrierbar ist.
>  Hallo an alle!
>  Ich habe eine  konkrete Frage zum 1. Teil der Aufgabe und
> zwar, wie kann man den folgenden Satz verstehen?
> fg kann als Linearkombination
>  von Quadraten integrierbarer Funktionen geschrieben
> werden, denn 2fg = [mm](f+g)^2-f^2-g^2.[/mm]
>  Daher ist auch fg integrierbar. Also ich verstehe nicht,
> wie man diese Gleichung bekommt? Und ob ich die für meinen
> Beweis überhaupt brauche?

[mm] (a+b)^2=a^2+b^2+2ab [/mm]
Die Aufgabe reduziert sich sich also darauf zu zeigen, dass wenn f Riemann-integrierbar ist, dann auch [mm] f^2. [/mm]
Ich würd elementar an die Aufgabe rangehen, also mit der Definition der Integrierbarkeit.
Vielleicht würde es aber auch nen anderen Weg geben.

>  
> Was brauche ich überhaupt für die Lösung der Aufgabe?
> monotonie, Linearität des Riemann-Integrals oder
> Dreiecksungleichung?

Die Linearität brauchst du, wenn du fg mit Hilfe der Quadrate schreiben willst. Also ja.

>  
> Ich würde mich auf jeden Tipp von euch freuen!!!
>  Danke im voraus
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Zu der zweiten Aufgabe... man kann max(f,g) auch als Formel ausdrücken mit +, - und Betragsstrichen.

Bezug
                
Bezug
Integrierbare Funktionen: Rückfrage
Status: (Frage) überfällig Status 
Datum: 22:20 Mo 02.06.2008
Autor: ToniKa

Aufgabe
Angenommen, f, g : [0, 1]   R seien integrierbare
> Funktionen. Zeigen
>  Sie, daß:
>  (a) f · g : [0, 1]  R,
>  (wobei f · g(x) = f(x)g(x), f¨ur alle x   1])
>  auch integrierbar ist,
>  (b) max{f, g} : [0, 1]  R,
>  (wobei max{f, g}(x) = max{f(x), g(x)} f¨ur alle x  
> 1]),
>  auch integrierbar ist.


Guten Abend,
danke für deinen Tipp, ich wollte noch fragen, was ich genau verwenden soll, denn die definition der Integrierbarkeit enthält nich eine Bedingung, sondern mehrere, soll ich die Beschränktheit der Funktionen und stetigkeit benutzen und auch das obere und untere Intervale, weil die Funktion integrierbar heisst, wenn ihr oberes und unteres Interval übereinstimmt.

ich würde dankbar sein, wenn du mir noch einen tipp geben würdest.
Viele Grüsse

Bezug
                        
Bezug
Integrierbare Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mi 04.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]