matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegrationstheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Integrationstheorie
Integrationstheorie < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationstheorie: integrierbare Funktionen
Status: (Frage) überfällig Status 
Datum: 14:28 Sa 22.01.2011
Autor: dennis2

Aufgabe
Betrachte Funktionen [mm] f_j\in \mathcal{L}^1 (j\in \IN). [/mm]

(i) Sei [mm] \summe_{j=1}^{\infty}f_j [/mm] konvergent und in [mm] \mathcal{L}^1. [/mm] Zeigen Sie anhand eines Beispiels, dass [mm] \integral\summe_{j=1}^{\infty}f_j\neq \summe_{j=1}^{\infty}\integral f_j [/mm] gilt.

(ii) Zeigen Sie: [mm] \summe_{j=1}^{\infty}\integral|f_j|<\infty, [/mm] so konvergiert [mm] \summe_{j=1}^{\infty}f_j [/mm] fast überall gegen eine integrierbare Funktion und es gilt [mm] \integral \summe_{j=1}^{\infty}f_j=\summe_{j=1}^{\infty}\integral f_j. [/mm]

Seien [mm] X_j\subseteq [/mm] X [mm] (j\in \IN) [/mm] meßbare Teilmengen mit [mm] X_j \to [/mm] X. Weiter sei [mm] f:X\to\IR [/mm] eine meßbare Funktion, die über jedes [mm] X_j [/mm] integrierbar ist.

(iii) Falls [mm] \limes_{j \to \infty}\integral_{X_j}|f|<\infty, [/mm] so ist f auch über X integrierbar und es gilt [mm] \integral_{X}f=\limes{j \to \infty}\integral_{X_j}f. [/mm]

Ich habe bis jetzt keine Ideen. Nur ein paar Notationssachen fallen mir ein:

Zu (i):
Es gilt: [mm] \summe_{j=1}^{\infty}f_j<\infty [/mm] (da der Ausdruck konvergent sen soll) und [mm] \integral |\summe_{j=1}^{\infty}f_j|<\infty [/mm] (da der Ausdruck in [mm] \mathcal{L}^1 [/mm] sein soll).


Kann mir jemand zu (i)-(iii) Tipps geben? Ich weiß nicht, wie ich wo anfangen kann.

        
Bezug
Integrationstheorie: zu (ii)
Status: (Frage) überfällig Status 
Datum: 19:51 Sa 22.01.2011
Autor: dennis2

Aufgabe
Kann man (ii) so zeigen?

Man betrachte [mm] (\summe_{j=1}^{n}f_j)_{n\in \IN}. [/mm] Diese Folge ist monoton anwachsend und man kann den Satz über monotone Konvergenz anwenden sowie die Additivität des Integtrals ausnutzen:

[mm] \integral \summe_{j=1}^{\infty}f_j=\integral \limes_{n\to\infty}\summe_{j=1}^{n}f_j=\limes_{n\to\infty}\integral \summe_{j=1}^{n}f_j=\limes_{n\to\infty}\summe_{j=1}^{n}\integral f_j=\summe_{j=1}^{\infty}\integral f_j\leq \summe_{j=1}^{\infty}\integral |f_j|<\infty [/mm]

Also

[mm] \integral \summe_{j=1}^{\infty}f_j\leq \summe_{j=1}^{\infty}\integral |f_j|=\integral \summe_{j=1}^{\infty} |f_j|<\infty [/mm]

Ich weiß nicht, ob man das sagen kann, aber folgt daraus denn nicht:

[mm] \summe_{j=1}^{\infty}f_j\leq \summe_{j=1}^{\infty} |f_j|<\infty [/mm] fast überall?

Und hat man damit nicht gezeigt, dass [mm] \summe_{j=1}^{\infty} f_j [/mm] fast überall gegen eine integrierbare Funktion konvergiert [die Summe aus den [mm] |f_j| [/mm] ist doch eine integrierbare Funktion]?

Bezug
                
Bezug
Integrationstheorie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:29 So 23.01.2011
Autor: dennis2

Aufgabe
Ich entschuldige mich, dass ich evtl. zu viele Fragen stelle, aber ich habe noch eine Frage zu (ii). Ich habe nämlich gelesen, dass man das mittels des Satzes von der majorisierten Konvergenz zeigen sollte.

Hier ist meine Idee.


Ich habe folgendes Korollar gefunden, das aus dem Satz von der majorisierten Konvergenz für die Partialsummen der Reihe [mm] \summe_{k=1}^{\infty}f_k [/mm] folgt:

"Die Funktionen [mm] f,f_n:X\to \IK [/mm] seien meßbar, und es gebe eine integrierbare Funktion [mm] g\in \mathcal{M}^{+}, [/mm] so daß für alle [mm] n\in \IN [/mm] gilt [mm] |\summe_{k=1}^{n} f_k|\leq [/mm] g f.ü., und es sei [mm] f=\summe_{k=1}^{\infty}f_k [/mm] f.ü.. Dann sind [mm] f,f_n [/mm] integrierbar, und es gilt [mm] \integral_{X} f=\summe_{n=1}^{\infty}\integral_{X} f_n." [/mm]

Das kann man doch jetzt übertragen auf (ii), oder?

Ich würde das jetzt einfach Stück für Stück abgehen:

Ich betrachte die Funktionen [mm] f=\summe_{j=1}^{\infty}f_j [/mm]  und  [mm] f_n=\summe_{j=1}^{n}f_j [/mm]

Dann gilt 1.) [mm] f=\limes_{n \to \infty}f_n [/mm] f.ü. [warum das f.ü. hier nötig ist, verstehe ich nicht ganz]

2.) Da gilt [mm] \summe_{j=1}^{\infty}\integral |f_j|=\integral \summe_{j=1}^{\infty}|f_j|<\infty [/mm] und [mm] \integral |\summe_{j=1}^{\infty}f_j|\leq \integral \summe_{j=1}^{\infty}|f_j|<\infty, [/mm] würde ich sagen, dass somit [mm] g=\summe_{j=1}^{\infty}|f_j| [/mm] eine integrierbare Funktion ist.

Außerdem gilt dann ja [mm] |\summe_{j=1}^{k}f_j|\leq [/mm] g f.ü. [auch hier weiß ich wieder nicht, warum man hier das f.ü. braucht].

Jedenfalls sind meiner Meinung nach damit alle Bedingungen des Korollars erfüllt und dieses sagt dann ja aus, dass die Funktionen [mm] f,f_n [/mm] integrierbar sind, dass also [mm] \summe_{j=1}^{\infty}f_j [/mm] [gemeint ist hier sicher die Folge der Partialsummen] f.ü. gegen eine integrierbare Funktion (nämlich eben f) konvergiert und dass gilt [mm] \integral f=\summe_{j=1}^{\infty}\integral f_j. [/mm]


Ich müsste jetzt nur noch wissen, was es mit diesen f.ü. im Korollar auf sich hat.
Kann es mir jemand erklären?

Bezug
                        
Bezug
Integrationstheorie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 25.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Integrationstheorie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Mo 24.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Integrationstheorie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 24.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]