matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrationsgrenzen Volumenint
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integrationsgrenzen Volumenint
Integrationsgrenzen Volumenint < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsgrenzen Volumenint: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Do 30.07.2009
Autor: Tobus

Aufgabe
1) [mm] \delta [/mm] v dV = [mm] \integral_{r=0}^{1}{}\integral_{\nu=0}^{\bruch{\pi}{2}}{}\integral_{\delta=0}^{\bruch{\pi}{2}}{r^{2}*sin(\nu) dr d\nu d\delta} [/mm]

2) Gegeben sei ein Körper durch die Flächen
e: z-1
[mm] g(x,y,z)=-x^{2}-y^{2}+z=0 [/mm]
Berechnen sie sein Volumen

Hallo, ich hab für die morgige Klausur noch ein paar Fragen. Ich hoffe ihr könnt mir da helfen.

1)
Hier weiß ich nicht, wie ich auf die Integrationsgrenzen komme. In der Aufgabe sind die nicht gegeben, ich muss diese also ausrechnen, aber wie ?

2) Volumenintegral:
Grenzen nach Transformation in Zylinderkoordinaten

[mm] x=r*cos(\delta) [/mm]
[mm] y=r*sin(\delta) [/mm]

[mm] V=\integral_{z=0}^{1}{}\integral_{\delta=0}^{2*\pi}{}\integral_{r=c}^{\wurzel{z}}{r dr d\delta dz} [/mm]

Hier auch wieder meine Frage, wie komme ich auf die Grenzen ?


VIELEN DANK !!!!

        
Bezug
Integrationsgrenzen Volumenint: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Do 30.07.2009
Autor: Andrey

1) Sieht aus wie irgendeine Achtel-Einheitskugel. Der Aufgabenstellung kann man tatsächlich schwer etwas entnehmen, weil sie nicht da ist. Zumindest auf der linken Seite ist beim TeXen anscheinend was schiefgelaufen?

2) Am besten überlegt man sich zuerst, über welchen Körper man hier etwas integrieren muss. Die erste gleichung ist eine Ebenengleichung, das ist einfach eine zur x-y-Ebene parallele Ebene im Abstand 1, das dürfte hoffentlich klar sein. Die zweite Varietät ist offensichtlich ein elliptisches Paraboloid, in diesem Fall einfach die Form, die bei der Rotation der "Normalparabel" um die z-Achse entstehen würde. Beide Flächen unterteilen den Raum jeweils in 2 Teile. Man skizziere oder überlege sich einfach, dass der [mm] \IR^3 [/mm] von diesen beiden Flächen in 4 bereiche zerlegt wird, von den 3 nicht messbar sind, da unendlich groß. Die einzige messbare Menge ist der kleine "Paraboloidstumpf" für z-werte zwischen 0 und 1, das sind auch schon die ersten Integrationsgrenzen. Wenn man das in Zylinderkoordinaten betrachtet, ist es klar, dass man für einen rotationssymmetrischen Paraboloidstumpf über den gesamten Winkel [mm] 0-2\pi [/mm] integrieren muss. Und da [mm] z=r^2 [/mm] gilt, muss man in der r-Richtung von 0 bis [mm] \wurzel[2]{z} [/mm] integrieren. Das kleine "c" war wohl auch ein Tippfehler, imho sollte da 0 stehen? Im integral selbst steht nur noch das Volumenelement für Zylinderkoordinaten, man will ja schließlich nur die Charakteristische Funktion integrieren.

greetz, Andrey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]