matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenIntegrationsgrenze finden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrieren und Differenzieren" - Integrationsgrenze finden
Integrationsgrenze finden < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsgrenze finden: Integration einer bek. f(x)
Status: (Frage) beantwortet Status 
Datum: 10:29 Mi 07.08.2013
Autor: Bsahrdt

Hallo, ich habe bekannte Funktion f(x).

Gibt es nun die Möglichkeit ohne eine Stammfunktion erstellen zu müssen folgendes herauszufinden:

Gegeben: Untergrenze Integration -> x=0
         Fläche unter der Kurve A=50

Die Funktion f(x) wurde von 0 bis a integriert.
als Ergebnis der integration kam 50 heraus.
Welchen Wert hat a???

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Dieses Forum]

        
Bezug
Integrationsgrenze finden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Mi 07.08.2013
Autor: fred97


> Hallo, ich habe bekannte Funktion f(x).
>  
> Gibt es nun die Möglichkeit ohne eine Stammfunktion
> erstellen zu müssen folgendes herauszufinden:
>  
> Gegeben: Untergrenze Integration -> x=0
>           Fläche unter der Kurve A=50
>  
> Die Funktion f(x) wurde von 0 bis a integriert.
>  als Ergebnis der integration kam 50 heraus.
>  Welchen Wert hat a???

I.a. ist a durch obige Zutaten nicht eindeutig bestimmt. Beispiel:

$f(x):=25* [mm] \sin [/mm] (x)$

Dann ist

    [mm] \integral_{0}^{2n+1}{f(x) dx}=50 [/mm]  für jedes n [mm] \in \IN_0 [/mm]

FRED

>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  [Dieses Forum]


Bezug
                
Bezug
Integrationsgrenze finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 Mi 07.08.2013
Autor: Bsahrdt

OK, also in meinem Fall kann man davon ausgehen, dass die Funktion immer nur von 0° bis 90° verläuft.
Doppelte Möglichkeiten kommen nicht vor

Bezug
                        
Bezug
Integrationsgrenze finden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mi 07.08.2013
Autor: Diophant

Hallo,

> OK, also in meinem Fall kann man davon ausgehen, dass die
> Funktion immer nur von 0° bis 90° verläuft.

Geht es dir um eine trigonometrische Funktion? Dann vergisss im Zusammenhang von Differenzial- und Integralrechnung mal die Altgrad ganz schnell und verwende das Bogenmaß: die dir bekannten Ableitungs- und Integrationsregeln gelten hier streng genommen nicht.

> Doppelte Möglichkeiten kommen nicht vor

Wie soll man das bestätigen oder widerlegen, wenn du deine konkrete Aufgabe nicht vorstellst?

Auf deine eigentliche Frage: zum Schwimmen braucht man Wasser? Und so ähnlich ist es halt mit der Intergalrechnung und den unbestimmten Integralen/Stammfunktionen. Du kennst die Summe über eine Funktion, du kennst den linken Rand des Intervalles und möchtest den rechten Rand berechnen. Da wird dir nichts anderes übrig bleiben als der Ansatz

F(a)-F(0)=50

auch wenn man das im Fall von linearen Funktionen f durch elementargeiometrische Formeln ersetzebn könnte (die ja aber vom Standpunkt der Analysis aus auch nichts anderes als bestimmte Integrale sind).

Gruß, Diophant

 

Bezug
                                
Bezug
Integrationsgrenze finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Mi 07.08.2013
Autor: Bsahrdt

OK, wenn ich es doch über die Stammfunktion machen muss, dann weiß ich Bescheid. DANKE

Bezug
                        
Bezug
Integrationsgrenze finden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Mi 07.08.2013
Autor: fred97


> OK, also in meinem Fall kann man davon ausgehen, dass die
> Funktion immer nur von 0° bis 90° verläuft.


>  Doppelte Möglichkeiten kommen nicht vor

Was soll das bedeuten ?

Du schreibst oben: "ich habe bekannte Funktion f(x)".

Wie wärs, wenn Du auch uns mit dieser Funktion bekannt machen würdest ?

FRED


Bezug
                                
Bezug
Integrationsgrenze finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Mi 07.08.2013
Autor: Diophant

Moin FRED,

> Wie wärs, wenn Du auch uns mit dieser Funktion bekannt
> machen würdest ?

Meinst du das in etwa so:

Darf ich vorstellen, das Ehepaar Hyperbolicus [hut]

Gruß, Diophant

Bezug
                                        
Bezug
Integrationsgrenze finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:28 Mi 07.08.2013
Autor: fred97


> Moin FRED,
>  
> > Wie wärs, wenn Du auch uns mit dieser Funktion bekannt
>  > machen würdest ?

>  
> Meinst du das in etwa so:
>  
> Darf ich vorstellen, das Ehepaar Hyperbolicus [hut]

Hallo Diophant,

ja, so stelle ich mir das vor mit dem Vorstellen.

Gruß FRED

>  
> Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]