matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration von (ln x)²
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Integration von (ln x)²
Integration von (ln x)² < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von (ln x)²: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:16 Mi 17.11.2010
Autor: Charlie22

Aufgabe
Integriere f(x)= 4 * ln x - (ln x)²

Wie integriert man int(ln x)² ?

Ich habe versucht, (ln x)² als (ln x)*(ln x) anzuschreiben und habe dann die partielle Integration angewendet mit [mm] \integral [/mm] u*v' [mm] \, [/mm] dx= u*v- [mm] \integral [/mm] u'*v [mm] \, [/mm] dx.
u=ln x, u'=1/x, v'=ln x und v= x * ln x - x. Herausbekommen habe ich dann ln x + x²/2.

Und insgesamt habe ich nach dem Integrieren von f(x)->  4x * ln x - x - (ln x + x²/2) herausbekommen. Ich weiß aber nicht, ob das stimmt, da ich nicht weiß, wie man (ln x)² richtig integriert bzw. ob mein Ansatz dafür stimmt.
Meine Rechnung sieht gesamt so aus:
[mm] \integral [/mm] 4* ln [mm] x\, [/mm] dx - [mm] \integral [/mm] (ln x)² [mm] \, [/mm] dx =
4* [mm] \integral [/mm] ln x [mm] \, [/mm]  dx - [mm] \integral [/mm] (ln x)² [mm] \, [/mm] dx=
4 x * ln x - x - [mm] \integral [/mm] (ln x)² [mm] \, [/mm] dx=
4 x * ln x - x  - (ln x + x²/2)

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration von (ln x)²: sehr undurchschaubar
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 17.11.2010
Autor: Loddar

Hallo Charlie,

[willkommenmr] !!


Dein Ansatz mittels partieller Integration ist sehr gut und richtig.
Auch $u_$ , $u'_$ , $v'_$ und $v_$ hast Du korrekt ermittelt.


Dann wird es leider absolut undurchsichtig und unübersichtlich.
Bitte rechne mal in kleineren Schritten vor.
Ich erhalte jedenfalls ein anderes Ergebnis.

Am Ende kannst Du auch stets die Probe machen, indem Du Dein Ergebnis wieder ableitest. Dann sollte die Ausgangsfunktion herauskommen.


Gruß
Loddar


Bezug
                
Bezug
Integration von (ln x)²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Mi 17.11.2010
Autor: Charlie22

Danke schon mal für deine Antwort.

Ich habe (ln x)² dann so integriert:

ln x * (x * ln x - x) - [mm] \integral [/mm] 1/x * (x * ln x - [mm] x)\, [/mm] =
(ln x)² * x - x - [mm] \integral [/mm] ln x [mm] -x\, [/mm] =
(ln x)² * x - x - (x * ln x - x - x²/2) =
(ln x)² * x - x - x* ln x +x + x²/2 =
(ln x)² * x - x* ln x + x²/2 =
ln x + x²/2

So habe ich (ln x)² integriert. Wenn du meinst, dass ich u, v, u' und v' richtig bestimmt habe, liegt der Fehler viell. hier in meinen weiteren Rechenschritten. Ich konnte ihn leider selbst nicht  finden, viell. weißt du was?

Danke sehr.

Bezug
                        
Bezug
Integration von (ln x)²: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mi 17.11.2010
Autor: MathePower

Hallo Charlie22,


[willkommenmr]


> Danke schon mal für deine Antwort.
>
> Ich habe (ln x)² dann so integriert:
>  
> ln x * (x * ln x - x) - [mm]\integral[/mm] 1/x * (x * ln x - [mm]x)\,[/mm] =
>  (ln x)² * x - x - [mm]\integral[/mm] ln x [mm]-x\,[/mm] =

Hier muss es heißen:

[mm]\left( \ \ln\left(x\right) \ \right)^{2}*x -x\red{*\ln\left(x\right)}-\integral_{}^{}{\ln\left(x\right)-\red{1} \ dx}[/mm]


>  (ln x)² * x - x - (x * ln x - x - x²/2) =
>  (ln x)² * x - x - x* ln x +x + x²/2 =
>  (ln x)² * x - x* ln x + x²/2 =
>  ln x + x²/2


Schreibe Exponenten immer in geschweiften Klammern: x^{2}


>  
> So habe ich (ln x)² integriert. Wenn du meinst, dass ich
> u, v, u' und v' richtig bestimmt habe, liegt der Fehler
> viell. hier in meinen weiteren Rechenschritten. Ich konnte
> ihn leider selbst nicht  finden, viell. weißt du was?
>
> Danke sehr.  


Gruss
MathePower

Bezug
                                
Bezug
Integration von (ln x)²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mi 17.11.2010
Autor: Charlie22

Danke sehr, aber wieso steht dann unter dem Integral eine -1?

Bezug
                                        
Bezug
Integration von (ln x)²: zusammenfassen + kürzen
Status: (Antwort) fertig Status 
Datum: 20:09 Mi 17.11.2010
Autor: Loddar

Hallo Charlie!


$u'*v \ = \ [mm] \bruch{1}{x}*\left[ \ x*\ln(x)-x \ \right] [/mm] \ = \ [mm] \bruch{1}{x}*x*\ln(x)-\bruch{1}{x}*x [/mm] \ = \ [mm] 1*\ln(x)-1 [/mm] \ = \ [mm] \ln(x)-1$ [/mm]


Gruß
Loddar


Bezug
                                        
Bezug
Integration von (ln x)²: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Mi 17.11.2010
Autor: Charlie22

Achso.. man hebt x heraus, kürzt es dann mit 1/x und heraus kommt dann das Integral von ln x - 1, oder?

Bezug
                                
Bezug
Integration von (ln x)²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Mi 17.11.2010
Autor: Charlie22

Vielen, vielen Dank! Jetzt ist es mir klar!! Hoffe, dass ich das am Freitag bei der Schularbeit auch hinkriege :/
Bezug
                                        
Bezug
Integration von (ln x)²: ausmultiplizieren
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 17.11.2010
Autor: Loddar

Hallo Charlie!


Nein, das entsteht durch das Ausmultiplizieren:

[mm]\red{u}*\blue{v} \ = \ \red{\ln(x)}*\left[ \ \blue{x*\ln(x)-x} \ \right] \ = \ \blue{x*\ln(x)}*\red{\ln(x)} \ \blue{-x}*\red{\ln(x)} \ = \ x*\ln^2(x)-x*\ln(x)[/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]