matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration von e^(sin(x))
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integration von e^(sin(x))
Integration von e^(sin(x)) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von e^(sin(x)): überhaupt möglich?
Status: (Frage) beantwortet Status 
Datum: 11:17 Di 12.12.2006
Autor: outkast

Hallo, ich bin gerade bei Integralen und stehe vor einem Problem.
[mm] \integral{e^{\sin(x)} dx} [/mm] wenn ich hier das Substituieren nehme und u=sin(x) stetze dann ist [mm] \bruch{du}{dx}=\cos(x) [/mm] nach [mm] dx=\bruch{du}{\cos(x)} [/mm] beim eingesetzten Integral erhalte ich dann [mm] \integral{\bruch{1}{\cos(x)} e^{u} du} [/mm] darf ich dann [mm] \bruch{1}{\cos(x)} [/mm] vor das Integral ziehen?
Da es ja jetzt einfach als Konstante gesehen wird erhalte ich [mm] \bruch{1}{\cos(x)} \integral{ e^{u} du} [/mm] = [mm] \bruch{1}{\cos(x)}*e^{u} [/mm]
Rücksubstituiert erhalte ich dann [mm] \bruch{1}{\cos(x)}*e^{\sin(x)}*\cos(x)=e^{\sin(x)} [/mm]
aber das ergibt beim Differenzieren doch kein [mm] e^{\sin(x)}. [/mm]

Ich versteh einfach nicht wo mein Denkfehler ist.

        
Bezug
Integration von e^(sin(x)): Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Di 12.12.2006
Autor: leduart

Hallo
> Hallo, ich bin gerade bei Integralen und stehe vor einem
> Problem.
>  [mm]\integral{e^{\sin(x)} dx}[/mm] wenn ich hier das Substituieren
> nehme und u=sin(x) stetze dann ist [mm]\bruch{du}{dx}=\cos(x)[/mm]
> nach [mm]dx=\bruch{du}{\cos(x)}[/mm] beim eingesetzten Integral
> erhalte ich dann [mm]\integral{\bruch{1}{\cos(x)} e^{u} du}[/mm]
> darf ich dann [mm]\bruch{1}{\cos(x)}[/mm] vor das Integral ziehen?

GANZ SICHER NICHT!

> Da es ja jetzt einfach als Konstante gesehen wird erhalte

wieso sollte [mm] cosx=\wurzel{1-sin^2x}=\wurzel{1-u^2} [/mm] eine Konstante sein?
ob das Integral allerdings so zu lösen ist hab ich nicht überprüft.

> ich [mm]\bruch{1}{\cos(x)} \integral{ e^{u} du}[/mm] =
> [mm]\bruch{1}{\cos(x)}*e^{u}[/mm]
>  Rücksubstituiert erhalte ich dann
> [mm]\bruch{1}{\cos(x)}*e^{\sin(x)}*\cos(x)=e^{\sin(x)}[/mm]
>  aber das ergibt beim Differenzieren doch kein
> [mm]e^{\sin(x)}.[/mm]
>  
> Ich versteh einfach nicht wo mein Denkfehler ist.  

versuch mal [mm] x^2 [/mm] nach deiner Methode zu integrieren mit [mm] u=x^2 [/mm] dann siehst du deinen Fehler schneller!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]