matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration von LN Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integration von LN Funktionen
Integration von LN Funktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von LN Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 So 07.05.2006
Autor: Ayhan

Hallo,

wie kommt man von der fkt. von f(x)=ln(x) ,
auf die stammfunktion


x*ln x -x

ich kann es einf. nicht nachvollziehen...

Lg
Ayhan

        
Bezug
Integration von LN Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 So 07.05.2006
Autor: Kyrill

Hallo,
du musst die Funkion ln x als 1*ln x ansehen und dann musst du mit der partiellen Integration die Stammfunktion  bestimmen.

Die Regel für die partielle Integration ist ja:

[mm] \integral_{a}^{b}{f(x)*g'(x) dx}=f(x)*g(x)|- \integral_{a}^{b}{f'(x)*g(x) dx} [/mm]

Jetzt setzt man die 1 [mm] \hat= [/mm] g'(x) und ln x [mm] \hat=f(x), [/mm] wissen muss man dann noch, dass die Ableitung von ln x  [mm] \bruch{1}{x} [/mm] ist.

Dann kommt bei der partiellen folgendes raus

  [mm] \integral_{a}^{b}{1*ln x dx}=x*ln [/mm] x|- [mm] \integral_{a}^{b}{x* \bruch{1}{x} dx} [/mm]
=x*ln [mm] x|-\integral_{a}^{b}{1 dx} [/mm]

Die Stammfunktion von 1 nach dx ist ja x und somt erhälst du dann als Stammfunktion:
x*ln x -x

Ich habe bei der partiellen Integration hinter den Teil der die Stammfunktion bildet diesen Ziechen gesetzt |, da ich im Formeleditor nichts dazu gefunden habe.

Ich hoffe ich konnte dir helfen.

Bezug
                
Bezug
Integration von LN Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 So 07.05.2006
Autor: Ayhan

Hallo

danke erstmal ,so kann ich das schon eher nachvollziehen.

Aber woher kommt die  - x   her ?

von 1/x das in potenzschreibweise   ==>

[mm] x^{-1} [/mm] ?

LG
Ayhan

Bezug
                        
Bezug
Integration von LN Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 So 07.05.2006
Autor: Terror-Teddy

Ne, keine Ahnung, wo du das 1/x siehst, aber -x kommt einfach aus dem Integral, das da noch steht:

[mm] \integral_{a}^{b}{1 dx} [/mm] = x

denn wenn f(x) = 1 dann ist ja F(x) = x


-x einfach weil ein Minus vor dem Integral steht

Bezug
                                
Bezug
Integration von LN Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 So 07.05.2006
Autor: Ayhan

Hi ich meinte mit 1/x


das hinter dem intergral steht die g(x)  multipliziert wird.

[mm] -\integral_{a}^{b}{ \bruch{1}{x} *x dx} \Rightarrow [/mm]

[mm] -\integral_{a}^{b}{ \bruch{x}{x} dx} [/mm]

- [mm] \integral_{a}^{b}{1 dx} \Rightarrow [/mm]  -x

ist das so richtig?

LG
Ayhan

Bezug
                                        
Bezug
Integration von LN Funktionen: Stimmt so ...
Status: (Antwort) fertig Status 
Datum: 21:51 So 07.05.2006
Autor: Loddar

Hallo Ayhan!


> - [mm]\integral_{a}^{b}{1 dx} \Rightarrow[/mm]  -x

[ok] Richtig!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]