matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration rationaler Funktio
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integration rationaler Funktio
Integration rationaler Funktio < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration rationaler Funktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Sa 15.10.2011
Autor: volk

Aufgabe
[mm] f(x)=\bruch{x^5+5x^4+4x^3-7x^2+4x+17}{x^3+4x^2+x-6} [/mm]

(a) Partialbruchzerlegung von f(x) durchführen
(b) unbestimmtes Integral von f(x) berechnen


Hallo,
ich bin mir nicht sicher, ob ich die Aufgabe richtig gelöst und den Rechenweg korrekt aufgeschrieben habe.

(a)

p(x):= [mm] x^5+5x^4+4x^3-7x^2+4x+17 [/mm]
q(x):= [mm] x^3+4x^2+x-6 [/mm]

Da Grad(p(x)) > Grad(q(x))  => Polynomdivision
Es folgt [mm] f(x)=\bruch{(x^2+x-1)(x^3+4x^2+x-6)+2x^2+11x+11}{x^3+4x^2+x-6}=x^2+x-1+\bruch{2x^2+11x+11}{x^3+4x^2+x-6} [/mm]
Beim Bruch ist jetzt Grad(q(x)) > Grad(p(x))
q(x)=(x-1)(x+2)(x+3)
Damit folgt
[mm] \bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{A}{x-1}+\bruch{B}{x+2}+\bruch{C}{x+3} [/mm]
Da keine Nullstelle doppelt vorkommt gilt [mm] A_{i}=\bruch{p(a_{i})}{\produkt_{i{\not=}j}^{}(a_{i}-a_{j})} [/mm]
Somit folgt A=2, B=1, C=-1
[mm] \bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} [/mm]
Damit ist das Ergebnis der Partialbruchzerlegung
[mm] f(x)=x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} [/mm]

(b)

[mm] \integral_{}^{}{x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} dx}=\bruch{1}{3}x^3+\bruch{1}{2}x^2-x+2ln(x-1)+ln(x+2)-ln(x+3) [/mm]



Ich habe noch eine Frage zu (a)
Wenn ich jetzt eine doppelte Nullstelle hätte hatten wir den Ansatz [mm] \bruch{3x^2+x}{x^3+x^2-x-1}=\bruch{A}{x-1}+\bruch{Bx+C}{(x+1)^2} [/mm]
Ist das ein allgemeingültiger Ansatz? Welchen Ansatz benötige ich bei Polynomen häherer Ordnung?

Grüße

        
Bezug
Integration rationaler Funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Sa 15.10.2011
Autor: MathePower

Hallo volk,


> [mm]f(x)=\bruch{x^5+5x^4+4x^3-7x^2+4x+17}{x^3+4x^2+x-6}[/mm]
>  
> (a) Partialbruchzerlegung von f(x) durchführen
>  (b) unbestimmtes Integral von f(x) berechnen
>  Hallo,
>  ich bin mir nicht sicher, ob ich die Aufgabe richtig
> gelöst und den Rechenweg korrekt aufgeschrieben habe.
>
> (a)
>  
> p(x):= [mm]x^5+5x^4+4x^3-7x^2+4x+17[/mm]
>  q(x):= [mm]x^3+4x^2+x-6[/mm]
>  
> Da Grad(p(x)) > Grad(q(x))  => Polynomdivision
>  Es folgt
> [mm]f(x)=\bruch{(x^2+x-1)(x^3+4x^2+x-6)+2x^2+11x+11}{x^3+4x^2+x-6}=x^2+x-1+\bruch{2x^2+11x+11}{x^3+4x^2+x-6}[/mm]
>  Beim Bruch ist jetzt Grad(q(x)) > Grad(p(x))

>  q(x)=(x-1)(x+2)(x+3)
>  Damit folgt
>  
> [mm]\bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{A}{x-1}+\bruch{B}{x+2}+\bruch{C}{x+3}[/mm]
>  Da keine Nullstelle doppelt vorkommt gilt
> [mm]A_{i}=\bruch{p(a_{i})}{\produkt_{i{\not=}j}^{}(a_{i}-a_{j})}[/mm]
>  Somit folgt A=2, B=1, C=-1
>  
> [mm]\bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3}[/mm]
>  Damit ist das Ergebnis der Partialbruchzerlegung
>  [mm]f(x)=x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3}[/mm]
>  

[ok]


> (b)
>  
> [mm]\integral_{}^{}{x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} dx}=\bruch{1}{3}x^3+\bruch{1}{2}x^2-x+2ln(x-1)+ln(x+2)-ln(x+3)[/mm]
>  


[ok]


>
>
> Ich habe noch eine Frage zu (a)
>  Wenn ich jetzt eine doppelte Nullstelle hätte hatten wir
> den Ansatz
> [mm]\bruch{3x^2+x}{x^3+x^2-x-1}=\bruch{A}{x-1}+\bruch{Bx+C}{(x+1)^2}[/mm]


Nicht ganz. Der korrekte Ansatz lautet:

[mm]\bruch{3x^2+x}{x^3+x^2-x-1}=\bruch{A}{x-1}+\bruch{B}{(x+1)^2}+\blue{\bruch{C}{x+1}}[/mm]


>  Ist das ein allgemeingültiger Ansatz? Welchen Ansatz
> benötige ich bei Polynomen häherer Ordnung?
>  
> Grüße LordPippin


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]