matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration mit substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integration mit substitution
Integration mit substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration mit substitution: Welche Fehler habe ich?
Status: (Frage) beantwortet Status 
Datum: 17:25 Do 28.03.2013
Autor: pinummer

Hallo zusammen,
Ich habe ein Aufgabe, und ich weiss nicht, welche Fehler habe..

ISt diese:  [mm] \int{\frac{1}{\tan^4(x)}+\frac{1}{\tan^2(x)}}\ddx=\int{\cot^4(x)+\cot^2(x)}\ddx [/mm]
ICh substituiere so:
t=cot, dt=1dx/-sen^2x , dx=-sen^2xdt ,
[mm] \int{(t^4(x)+t^2(x)-sen^2x)dt} [/mm]
und danach:
[mm] -sen^2x{\frac{t^5}{5}+\frac{t^3}{3}} [/mm]

danach t=cot, aber diese Lösung ist falsch, weil die Lösung [mm] -1/3cot^3(x) [/mm] ist , und ich weiss nicht wo ist mein Fehler..

Einige Helfe bitte!???


Danke!!!
[

        
Bezug
Integration mit substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Do 28.03.2013
Autor: leduart

Hallo
ich verstehe deinen Weg nicht wirklich, du schreibst zu lückenhaft.es fehlen Klammern usw.
Am einfachsten. geh zu wolfram alpha und lass dir die step bei step Lösung zeigen.
Gruss leduart



Bezug
                
Bezug
Integration mit substitution: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:32 Do 28.03.2013
Autor: pinummer


> Hallo
>  ich verstehe deinen Weg nicht wirklich, du schreibst zu
> lückenhaft.es fehlen Klammern usw.
>  Am einfachsten. geh zu wolfram alpha und lass dir die step
> bei step Lösung zeigen.
>  Gruss leduart
>  
>  

Ich habe jetzt das verändert, verstehst du jetzt das??

danke!

Bezug
        
Bezug
Integration mit substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Do 28.03.2013
Autor: Helbig

Hallo pinummer,

zunächst [willkommenmr].

>  Ich habe ein Aufgabe, und ich weiss nicht, welche Fehler
> habe..
>  
> ISt diese:  
> [mm]\int{\frac{1}{\tan^4(x)}+\frac{1}{\tan^2(x)}}\ddx=\int{\cot^4(x)+\cot^2(x)}\ddx[/mm]
>  ICh substituiere so:
>  t=cot, dt=1dx/-sen^2x , dx=-sen^2xdt ,
> [mm]\int{(t^4(x)+t^2(x)-sen^2x)dt}[/mm]
>   und danach:
>  [mm]-sen^2x{\frac{t^5}{5}+\frac{t^3}{3}}[/mm]

Hier mußt Du unbedingt Klammern setzen und dann erhältst Du:

    [mm] $\int \left({1 \over \tan^4 x} + {1\over \tan^2 x}\right)dx=\int (t^4+t^2) (-\sin^2 [/mm] x) [mm] dt\,.$ [/mm]

Jetzt mußt Du das $x$ durch [mm] $\arctan {1\over t}$ [/mm] ersetzen und mit etwas Trigonometrie vereinfachen... (Die Variable $x$ auf der rechten Seite muß vollständig substituiert werden -- das $x$ stehen zu lassen war Dein Fehler.)

Gruß,
Wolfgang

Bezug
        
Bezug
Integration mit substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Fr 29.03.2013
Autor: fred97

Substituiere [mm] t=\tan(x) [/mm] und beachte

     [mm] \bruch{dt}{dx}=1+t^2 [/mm]

Dann:

[mm] \int{(\frac{1}{\tan^4(x)}+\frac{1}{\tan^2(x)}})dx=\int{\frac{1}{t^2}}dt [/mm]


Edit: ich hatte mich verschrieben. Statt [mm] \int{\frac{1}{t^2}}dt [/mm] sollte da stehen:

[mm] \int{\frac{1}{t^4}}dt [/mm]
FRED

Bezug
                
Bezug
Integration mit substitution: Rechenfehler?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:36 Sa 30.03.2013
Autor: Helbig


> Substituiere [mm]t=\tan(x)[/mm] und beachte
>  
> [mm]\bruch{dt}{dx}=1+t^2[/mm]
>  
> Dann:
>  
> [mm]\int{(\frac{1}{\tan^4(x)}+\frac{1}{\tan^2(x)}})dx=\int{\frac{1}{t^2}}dt[/mm]
>

Hallo FRED,

die letzte Gleichung stimmt nur für die Substitution t=1/tan(x), aber nicht für t=tan(x).

Gruß,
Wolfgang


Bezug
                        
Bezug
Integration mit substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:48 Sa 30.03.2013
Autor: fred97


> > Substituiere [mm]t=\tan(x)[/mm] und beachte
>  >  
> > [mm]\bruch{dt}{dx}=1+t^2[/mm]
>  >  
> > Dann:
>  >  
> >
> [mm]\int{(\frac{1}{\tan^4(x)}+\frac{1}{\tan^2(x)}})dx=\int{\frac{1}{t^2}}dt[/mm]
>  >

>
> Hallo FRED,
>  
> die letzte Gleichung stimmt nur für die Substitution
> t=1/tan(x), aber nicht für t=tan(x).


Hallo Wolfgang,

Ich hatte mich vertippt. Rechts sollte [mm] \int{\frac{1}{t^4}}dt [/mm] stehen.

Gruß FRED

>  
> Gruß,
>  Wolfgang
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]