matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration mit Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integration mit Substitution
Integration mit Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration mit Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Sa 09.08.2014
Autor: saibot187

Aufgabe
[mm] \integral_{0}^{ln4}{\bruch{e^{x}}{e^{2x}+2e^{x}+2} dx} [/mm]
Substitution mit u = [mm] e^{x} [/mm] ist vorgegeben.

Hallo zusammen,

ich hab hier eine kleine Integrationsaufgabe.
Bisher habe ich das gemacht:
[mm] u=e^{x} \to \bruch{dx}{du} [/mm] = [mm] \bruch{1}{u} \to [/mm]  dx = [mm] \bruch{du}{u} [/mm]

[mm] \integral_{0}^{4}{\bruch{1}{u^{2}+2u+2} du} [/mm]

Hier komme ich nicht mehr weiter. War das bisher gerechnete falsch?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke für eure Antworten

        
Bezug
Integration mit Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 09.08.2014
Autor: fred97


> [mm]\integral_{0}^{ln4}{\bruch{e^{x}}{e^{2x}+2e^{x}+2} dx}[/mm]
>  
> Substitution mit u = [mm]e^{x}[/mm] ist vorgegeben.
>  Hallo zusammen,
>  
> ich hab hier eine kleine Integrationsaufgabe.
>  Bisher habe ich das gemacht:
>  [mm]u=e^{x} \to \bruch{dx}{du}[/mm] = [mm]\bruch{1}{u} \to[/mm]  dx =
> [mm]\bruch{du}{u}[/mm]
>  
> [mm]\integral_{0}^{4}{\bruch{1}{u^{2}+2u+2} du}[/mm]
>  
> Hier komme ich nicht mehr weiter. War das bisher gerechnete
> falsch?

Einen Fehler hast Du: es sollte

   [mm]\integral_{1}^{4}{\bruch{1}{u^{2}+2u+2} du}[/mm]


lauten.

Es ist  [mm] u^{2}+2u+2=(u+1)^2+1. [/mm] Substituiere v=u+1

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Danke für eure Antworten


Bezug
                
Bezug
Integration mit Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Sa 09.08.2014
Autor: saibot187

Vielen Dank! Ergebnis ist arctan(5)-arctan(2)

Bezug
        
Bezug
Integration mit Substitution: auch eine Frage dazu
Status: (Frage) beantwortet Status 
Datum: 17:03 Mi 13.08.2014
Autor: geigenzaehler

Aufgabe
Ich habe auch eine Frage dazu:

Wollte die Aufgabe auch spaßeshalber rechnen, komme aber auf komisches Zeug - v. a. wenn ich mir die mit Wolframalpha ermittelte Lsg. anschaue.

Wo sind meine Fehler?

(ich rechne alles als unbestimmtes Integral...)

(EDIT: Fehler schon gefunden - "Potenzprobleme"! Wäre das weitere Vorgehen trotzdem richtig ab Stelle (*) ?

Subst.:

[mm] u:=e^x [/mm]

->

[mm] \integral{\bruch{u}{ue^2+2u+2} dx} [/mm]


Subst. Differential:

[mm] du/dx=e^x [/mm] <=> du=e^xdx


-> ...[mm] \integral{\bruch{1}{ [red] u [/red] e^2+2u+2} du} [/mm]

(*)   hier ist der Fehler: ich komme auf [mm] ue^2..., [/mm] weil bei mir e^(2x) fälschlicherweise [mm] e^x*e^2 [/mm] war...statt [mm] (e^x)^2->u^2 [/mm]


weitere Subst.:

v:= [mm] ue^2+2u+2 [/mm]

-> ...[mm] \integral{\bruch{1}{v} du} [/mm]

Subst. Differential:

[mm] dv/du=e^2+2 [/mm] <=> dv= [mm] (e^2+2)du [/mm]

-> ...[mm] 1/(e^2+2) \integral{\bruch{1}{v} dv} = 1/(e^2+2)*ln| ue^2+2u+2 | [/mm]


Mit Resubstitutionen komme ich auf die Stammfktn

[mm] 1/(e^2+2)*ln| e^{2x}+2e^x+2 | [/mm]


Leite ich dies zur Probe nach x ab, kommt nicht der Integrand heraus...



Ist es ab dem Fehler richtig?

[mm] [/mm]

Bezug
                
Bezug
Integration mit Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Mi 13.08.2014
Autor: angela.h.b.


Hallo,

wenn ich Dich richtig verstehe, möchtest Du wissen, ob Du

[mm] \integral\bruch{1}{u*e^2+2u+2} [/mm]

richtig berechnest.

>

> v:= [mm]ue^2+2u+2[/mm]

>

> -> ...

[mm] \integral\bruch{1}{u*e^2+2u+2} [/mm] =

> [mm] \integral{\bruch{1}{v} du} [/mm]

>

> Subst. Differential:

>

> [mm]dv/du=e^2+2[/mm] <=> dv= [mm](e^2+2)du[/mm]

>

> -> ...=  [mm] 1/(e^2+2) \integral{\bruch{1}{v} dv} [/mm]  

= [mm] 1/(e^2+2)* [/mm] ln(v)

Resub mit v:= [mm]ue^2+2u+2[/mm] ergibt

> =   [mm] 1/(e^2+2)*ln| ue^2+2u+2 [/mm] |

Wenn ich das nach u ableite, bekomme ich [mm] 1/(e^2+2)*\bruch{e^2+2}{ ue^2+2u+2}=\bruch{1}{ ue^2+2u+2}, [/mm]

und alles ist in bester Ordnung.


Daß Dein Tun wegen des von Dir bemerkten Fehlers Dir  nicht das im Eingangspost gefragte Integral liefert, ist Dir ja inzwischen klar.

LG Angela



Bezug
                        
Bezug
Integration mit Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mi 13.08.2014
Autor: geigenzaehler

Richtig verstanden. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]