matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration im 3-dim. Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Integration im 3-dim. Raum
Integration im 3-dim. Raum < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration im 3-dim. Raum: Anpassen des Koordinatensystem
Status: (Frage) beantwortet Status 
Datum: 22:33 Mo 05.05.2014
Autor: stromberg09

Aufgabe
Berechnen sie folgendes Integral:

[mm] \integral{\bruch{1}{(2\pi)^{3}}e^{i\vec{k}\vec{r}}\bruch{4\pi}{k^{2}} d^{3}k} [/mm]

Ich habe hier zunächst eine Transformation in Kugelkoordinaten vorgenommen:

Mit
[mm] k_{x}=k*sin(\alpha)*cos(\beta) [/mm]
[mm] k_{y}=k*sin(\alpha)*sin(\beta) [/mm]
[mm] k_{z}=k*cos(\alpha) [/mm]

[mm] x=r*sin(\alpha')*cos(\beta') [/mm]
[mm] y=r*sin(\alpha')*sin(\beta') [/mm]
[mm] z=r*cos(\alpha') [/mm]
erhalte ich dann:


[mm] \integral_{0}^{\infty}\integral_{0}^{\pi}\integral_{0}^{2\pi}{\bruch{1}{(2\pi)^{3}}e^{ikr(sin(\alpha)*cos(\beta)sin(\alpha')*cos(\beta')+sin(\alpha)*sin(\beta)sin(\alpha')*sin(\beta')+cos(\alpha)cos(\alpha'))}\bruch{4\pi}{k^{2}} k^{2} sin(\alpha) d\beta d\alpha dk} [/mm]

Umformen:

[mm] \integral_{0}^{\infty}\integral_{0}^{\pi}\integral_{0}^{2\pi}{\bruch{4\pi}{(2\pi)^{3}}e^{ikr(sin(\alpha)*sin(\alpha')(cos(\beta)*cos(\beta')+sin(\beta)*sin(\beta'))+cos(\alpha)cos(\alpha'))} sin(\alpha) d\beta d\alpha dk} [/mm]

An dieser Stelle wurde mir gesagt, dass man das k-Koordinatensystem so legen soll, dass [mm] k_{x} [/mm] auf die z-Achse des Ortskoordinatensystems fällt.

Kann mir jemand an dieser Stelle erklären, wie diese Transformation funktioniert. Ich komme irgendwie nicht dahinter, obwohl ich den Eindruck habe, dass es nicht allzu schwer sein sollte :-( .

Schon mal vielen Dank im voraus.

        
Bezug
Integration im 3-dim. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Di 06.05.2014
Autor: fred97

Bei Deinen viele k's und r's in ganz unterschiedlichen Bedeutungen wird mir schwindelig !

Einmal schreibst Du [mm] e^{i\vec{k}\vec{r}}. [/mm] Die Pfeile riechen nach Vektoren.

Weiter unten schriebst Du [mm] e^{ikr}, [/mm] ohne Pfeile !

Was ist r ? Was ist k ? Was ist [mm] \vec{k} [/mm] ?  Was ist [mm] \vec{r} [/mm]

Unterm Integral steht der Faktor [mm] \bruch{4\pi}{k^{2}}. [/mm] Ist k [mm] \in \IR [/mm] ?


Dann schreibst Du $d^3k.$ Welche bedeutung hat hier k ?

Noch eine Frage: worüber soll denn eigentlich integriert werden ?

[mm] \integral_{????}{\bruch{1}{(2\pi)^{3}}e^{i\vec{k}\vec{r}}\bruch{4\pi}{k^{2}} d^{3}k} [/mm]

FRED

Bezug
                
Bezug
Integration im 3-dim. Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:40 Di 06.05.2014
Autor: stromberg09

Hallo Fred,

leider kann ich für die unterschiedlichen k und r auch nichts dafür, da so uns die Aufgabe gestellt wurde. Ich habe lediglich die Aufgabenstellung 1 zu 1 wiedergegeben.
Für k müsste k [mm] \in \IR [/mm] gelten. (War aber leider auch nicht angegeben). [mm] d^{3}k [/mm] stellt das Volumenintegral dar, sprich [mm] d^{3}k=dk_{x}dk_{y}dk_{z}. [/mm] Der Vektor k ist ein dreidimensionaler Vektor mit Werten für [mm] dk_{x}dk_{y}dk_{z}. [/mm] Gleiches gilt für r. Weiter unten wird dementsprechend k und r ohne Vektor geschrieben, da diese aus der Transformation in Kugelkoordinaten stammen.
Die Integration soll über den gesamten Raum stattfinden.

Grüße
Daniel

Bezug
        
Bezug
Integration im 3-dim. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Di 06.05.2014
Autor: Event_Horizon

Hallo!

Man müßte noch wissen, was [mm] \vec{k} [/mm] und [mm] \vec{r} [/mm] denn nun darstellen sollen, bzw., wie ihre Ortsabhängigkeit aussieht.

Wenn [mm] \vec{k} [/mm] im gesamten Raum konstant ist, liegt es nahe, ein Koordinatensystem zu wählen, in welchem [mm] \vec{k} [/mm] parallel zu einer Achse ist, z.B. [mm] \vec{k}=k_0*\vektor{0\\0\\1} [/mm]   (Ich schreib das mal so, sonst kommt man noch durcheinander.)
Damit schmilzt dein Integral schonmal deutlich zusammen, und eine Integration gelingt schon in karth. Koordinaten.

Dabei wird dir das Integral allerdings um die Ohren fliegen. Daher muß was anderes dahinter stecken.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]