matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration: e^x sin^2(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integration: e^x sin^2(x)
Integration: e^x sin^2(x) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: e^x sin^2(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mi 18.06.2008
Autor: AbraxasRishi

Aufgabe
[mm]\integral{e^x*sin^2x dx}[/mm]

Hallo!

Mithilfe der partiellen Integration soll ich dieses Integral berechnen, obwohl ich schon mehrere Varianten probiert habe, will es mir nicht gelingen. Könnte mir bitte jemand einen Ansatz zeigen? Würde mich sehr freuen!

Meine Überlegungen sind:

[mm] \integral{e^x*sin^2x dx} [/mm]

v' = [mm] e^x [/mm]            v = [mm] e^x [/mm]
u = [mm] sin^2(x) [/mm]      u'= 2sin(x)*cos(x)

[mm]\integral{e^x*sin^2(x) dx} = sin^2(x)*e^x-\integral{e^x*2*sin(x)*cos(x) dx}[/mm]

Hier bleibe ich hängen, ich sehe nicht wie man das umformen könnte, oder de trigonometrischen Pythagoras anwenden könnte. habe versucht zu substituieren aber ich schaffe es noch nicht beide Methoden zu kombinieren. Falls es hier wirklich Sinn macht zu substituieren, wäre ich froh wenn mir jemand einige Schritte vorrechnen könnte.

Vielen Dank!  :-)

Gruß

Angelika

        
Bezug
Integration: e^x sin^2(x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Mi 18.06.2008
Autor: Rene

Du bist schon auf dem richtigen Weg!

Du kannst jetzt schreiben [mm]2\sin(x)\cos(x)=\sin(2x)[/mm]

Dann löst du jetzt erstmal das Integral
[mm]\int{e^x\sin(2x)\text{d}x}[/mm]

durch partielle Integration. Das liefert dann
[mm]\int{e^x\sin(2x)\text{d}x}=e^x\sin(2x)-2\int{e^x\cos(2x)\text{d}x}[/mm]

Nun löst du
[mm]\int{e^x\cos(2x)\text{d}x}=e^x\cos(2x)+2\int{e^x\sin(2x)\text{d}x}[/mm]

Einsetzen liefert
[mm]\int{e^x\sin(2x)\text{d}x}=e^x\sin(2x)-2e^x\cos(2x)-4\int{e^x\sin(2x)\text{d}x}[/mm]

Jetzt [mm]-4\int{e^x\sin(2x)\text{d}x}[/mm] auf die linke Seite bringen und durch 5 teilen liefert.
[mm]\int{e^x\sin(2x)\text{d}x}=\frac{1}{5}e^x\sin(2x)-\frac{2}{5}e^x\cos(2x)[/mm]

Das kannst du in deine Ausgangsgleichung einsetzen und erhälst
[mm]\int{e^x\sin^2(x)\text{d}x}=e^x\sin^2(x)-\frac{1}{5}e^x\sin(2x)+\frac{2}{5}e^x\cos(2x)[/mm]

Jetzt gilt [mm]\sin(2x)=2\sin(x)\cos(x)[/mm] und [mm]\cos(2x)=1-2\sin^2(x)[/mm]. Einsetzen bringt
[mm]\int{e^x\sin^2(x)\text{d}x}=e^x\sin^2(x)-\frac{2}{5}e^x\sin(x)\cos(x)+\frac{2}{5}e^x-\frac{4}{5}e^x\sin^2(x)[/mm]

Zusammenfassen liefert als Ergebnis
[mm]\int{e^x\sin^2(x)\text{d}x}=\frac{1}{5}e^x[\sin(x)-2\cos(x)]\sin(x)+\frac{2}{5}e^x[/mm]

Hoffe es ist nachvollziehbar für dich. Die benutzten Theoreme kanns du entweder irgendwo nachschlagen oder auch über die komplexe darstellung von cos und sin herleiten, soweit du das schon gehabt hast.

Viel Erfolg!

Bezug
                
Bezug
Integration: e^x sin^2(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Mi 18.06.2008
Autor: AbraxasRishi

Danke Rene!

Durch deine ausführliche Erklärung hab ichs jetzt verstanden!  [lichtaufgegangen]

Gruß

Angelika

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]