matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Integration durch Substitution
Integration durch Substitution < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Mi 01.07.2009
Autor: Alexlysis

Aufgabe
[mm] f(x)=e^\wurzel{x} [/mm]
Das Integral [1;2] soll berechnet werden.

Moin!
Ich bin mir leider nicht mehr so sicher, was die Integration durch Substitution angeht, und würde mich daher über eure Antworten freuen.

Soweit ich weiß:

[mm] \integral_{a}^{b}{f(g(x))*g'(x) dx}=\integral_{g(a)}^{g(b)}{f(t) dt} [/mm]

Das jetzt auf die Aufgabe angewand, würde bedeuten: [mm] f(g(x))=e^\wurzel{x} [/mm]  und [mm] g'(x)=\bruch{1}{2\wurzel{x}} [/mm]

Also ergänze ich noch das "fehlende" g'(x):

[mm] \Rightarrow F(x)=2\wurzel{x}\integral_{1}^{2}{\bruch{1}{2\wurzel{x}}e^\wurzel{x}}dx [/mm]

So jetzt würde ich "substituieren" mit

[mm] t:=\wurzel{x} [/mm]

[mm] \Rightarrow 2t\integral_{\wurzel{1}}^{\wurzel{2}}{e^t dt} [/mm]

So und das "2t" vor dem integral macht mich jetzt ein bissel stutzig.... weiß nämlich nicht, ob das richtig alle so ist, wenn ja müsst man das intergral so berechnen???:

[mm] 2\wurzel{2}*e^\wurzel{2} [/mm] - [mm] 2\wurzel{1}*e^\wurzel{1} [/mm]


Grüße Alex


        
Bezug
Integration durch Substitution: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:30 Mi 01.07.2009
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Alexlysis!


Du kannst nicht einfach mit der Integrationsvariable "erweitern" bzw. dieses vor das Integral schreiben.

Gehe vor wie folgt:
$$u \ := \ \wurzel{x}$$
$$u' \ = \ \bruch{du}{dx} \ = \ \bruch{1}{2*\blue{\wurzel{x}}} \ = \ \bruch{1}{2*\blue{u}}$$
$$\Rightarrow \ \ dx \ = \ 2u*du$$
Damit erhältst Du folgendes Integral, welches man mittels partieller Integration lösen kann:
$$\integral{e^{\wurzel{x}} \ dx} \ = \ ... \ = \ \integral{2u*e^u} \ du}$$

Gruß
Loddar


Bezug
                
Bezug
Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 01.07.2009
Autor: Alexlysis

ok !
wobei beim letzten integral die grenzen verändert sind oder?

[mm] \integral_{\wurzel{a}}^{\wurzel{b}}{2u*e^u du} [/mm]

hoffe die frage ist jetzt nich allzudumm, aber woher kommt das:

[mm] u'=\bruch{du}{dx} [/mm]
??

glaube dass das stimmt, aber ne herleitung oder so würde mich sehr befriedigen, ihc mag es nich einfahc irgendwas hinzunehmen ;-) und dann stumpf anzuwenden

gruß alex




Bezug
                        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mi 01.07.2009
Autor: Steffi21

Hallo, wenn du ein Integral durch Substitution lösen möchtest, so ist es einfacher, die Grenzen 1 und 2 erst dann wieder zu benutzen, wenn du die Rücksubstitution gemacht hast, du hast doch substituiert [mm] u:=\wurzel{x} [/mm] davon ist die Ableitung zu bilden [mm] u'=\bruch{du}{dx}, [/mm] es ist also nach x abzuleiten, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]