matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integration durch Substitution
Integration durch Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Mo 21.01.2008
Autor: rambazambarainer

Aufgabe
Leiten Sie f mittels f' her

f'(x) = − [mm] \bruch{\wurzel{L^2-x^2}}{x} [/mm]  , x [mm] \in [/mm] [−L, 0 [

Aufgabe: Berechnen Sie f durch folgende Substitution:
[mm] t=\wurzel{L^2-x^2} [/mm]

Hinweis: Integration durch Substitution; Integration einer rationalen Funktion; Polynomdivision;
Partialbruchzerlegung;

Loesen Sie das Integral der rationalen Funktion, das Sie nach der
Substitution erhalten, mittels Polynomdivision und Partialbruchzerlegung.
Verwenden Sie die Integrationsregel

[mm] \integral_{}^{}{\bruch{1}{t+a}dt} [/mm] = ln |t+a| +c    fuer ein  c [mm] \in \IR [/mm]

Denken Sie auch hier wieder an Ruecksubstitution und daran, die Integrationskonstante
zu berechnen.

Hallo!
Wir versuchen  schon seit 2 tagen diese aufgabe zu loesen, allerdings
kommen wir schon nach der Substitution nicht weiter.

wir erhalten den term  [mm] \integral_{}^{}{\bruch{t^2}{L^2-t^2}dt} [/mm]
bei dem nicht weiterwissen und auch nicht sicher sind ob er richtig ist.

Es waere sehr nett wenn uns jmd. eine idiotensichere Anleitung zur Loesung der Aufgabe
geben koennte.

gruss rainer

        
Bezug
Integration durch Substitution: weitere Schritte
Status: (Antwort) fertig Status 
Datum: 19:34 Mo 21.01.2008
Autor: Loddar

Hallo Rainer!



> wir erhalten den term  [mm]\integral_{}^{}{\bruch{t^2}{L^2-t^2}dt}[/mm]
> bei dem nicht weiterwissen und auch nicht sicher sind ob er richtig ist.

[ok] Isser ...

[mm] $$\bruch{t^2}{L^2-t^2} [/mm] \ = \ [mm] -\bruch{t^2}{t^2-L^2} [/mm] \ = \ [mm] -\bruch{t^2-L^2+L^2}{t^2-L^2} [/mm] \ = \ [mm] -\left(\bruch{t^2-L^2}{t^2-L^2}+\bruch{L^2}{t^2-L^2}\right) [/mm] \ = \ [mm] -1-\bruch{L^2}{(t-L)*(t+L)} [/mm] \ = \ [mm] -1-\left(\bruch{A}{t-L}+\bruch{B}{t+L}\right) [/mm] \ = \ ...$$

Nun die MBPartialbruchzerlegung durchführen, um $A_$ und $B_$ zu bestimmen. Anschließend kann dann mit dem genannten Tipp integriert werden.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]