matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Aufleiten einer Sinus-Funktion
Status: (Frage) beantwortet Status 
Datum: 18:42 So 13.01.2008
Autor: McMichi

Aufgabe
Die momentane Änderungsrate des Luftvolumens in der Lunge eines Menschen kann durch die Funktion f mit [mm] f(t)=2*sin(\bruch{2}{5}*\pi*t) [/mm] modelliert werden (dabei ist t Zeit in Sekunden, f(t) in Liter pro Sekunde gegeben).

Wir nehmen vereinfacht an, dass zur Zeit t=0 keine Luft in der Lunge ist.

Bestimmen Sie das Integral und damit F(t)
[ Lösungskontrolle: F(t)= [mm] \bruch{5}{\pi}*(1-cos(\bruch{2}{5}*\pi*t)) [/mm] ]

Hi Leute,
ich habe mir bisher schon Gedanken zu dieser Aufgabe gemacht und bin dabei zu dem Entschluss gekommen das Ganze mit Hilfe der Substitution aufzuleiten.

Dann lege ich mal los:


[mm] F(t)=\integral_{0}^{t}{2*sin(\bruch{2}{5}*\pi*t) dt} [/mm]   // substituieren z = [mm] \bruch{2}{5}*\pi*t [/mm]


// [mm] \bruch{dz}{dt}= [/mm] z' = [mm] \bruch{2}{5}*\pi [/mm]     // Umstellen nach dt

// [mm] \bruch{5}{2}*\pi*dz [/mm] = dt


[mm] F(t)=\integral_{0}^{t}{2*sin(z) * \bruch{5}{2}*\pi*dz} [/mm]  // Einsetzen von dt ins Ausgangsintegral

[mm] F(t)=\integral_{0}^{t}{5*\pi*sin(z) dz} [/mm]  // hier habe ich jetzt so meine Schwierigkeiten. Eigentlich müsste ich dieses Integral lediglich aufleiten und anschließend müsste ich resubstituieren, et voilà, wäre ich fertig. Bei mir passt das aber leider nicht, wenn ich dieses Integral aufleite und anschließend z einsetze.

[mm] F(t)=\integral_{0}^{t}{2*sin(z) * \bruch{5}{2}*\pi*dz} [/mm] = [mm] -\bruch{5\pi}{z'}*cos(z) [/mm] // Wenn ich nun z einsetze komme ich nicht zur vorgegebenen Lösung



Kann mir jemand sagen, was ich bei der Aufgabe falsch gemacht habe?
Danke im Vorraus

Gruß
Michael


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 13.01.2008
Autor: Maggons

Huhu

Auf den ersten Blick würde ich sagen, dass du falsch umgestellt hast.

$ [mm] \bruch{dz}{dt}= [/mm] $ = z' =$ [mm] \bruch{2}{5}\cdot{}\pi [/mm] $

wie du bereits gesagt hast.

Wenn du nun umstellen willst nach dt muss die Gleichung lauten:

dt = $ [mm] \bruch{dz}{\bruch{2}{5}*\pi} [/mm] $

weiter habe ich nicht geschaut; rechne einfach mal damit weiter; falls es nochmal hakt, frag einfach nochmal nach :)

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]