matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Hausaufgabe
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 05.02.2007
Autor: Kristof

Aufgabe
Berechnen Sie das Intergral mit der angegebenen Substitution.
a. )  [mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm] ;
        g (x) = 1 + [mm] 2x^2 [/mm]

b.)   [mm] \integral_{0}^{1}{x^2*e^x^3+1 dx} [/mm]

Hallo,
Habe mal wieder ein riesen Problem.
Haben heute in Mathe mit Substitution angefangen und ich habe um ehrlich zu sein kein Wort verstanden.
Zuerst mal eine Allgemeine Frage, was ist eine Substitution, bzw. was möchte ich damit erreichen?

Habe es so verstanden, dass bei schweren Ausgangsfunktionen die Substitution helfen kann die Stammfunktion zu finden. Richtig?

Naja,
ich fange erstmal mit Aufgabe a.) an.
Hier muss ich allerdings sagen das ich die nicht konnte. Hatte aber eine Lösung, wobei mir hier auch Fragen aufkommen.
Aber naja.

[mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm]

Substitution : g (x) = 1 + [mm] 2x^2 [/mm] und f (t) = [mm] \bruch{1}{\wurzel{t}} [/mm]
Hier kommt schon gleich die 1. Frage.
Wie komme ich bitte auf f (t) = [mm] \bruch{1}{\wurzel{t}}? [/mm]
Gibt es da irgendeinen Weg um das herauszufinden?

Ableitung : g '(x) = 4x

Nun zur Durchführung der Intergration :

[mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm]

= [mm] \integral_{0}^{2}{\bruch{1}{\wurzel{1+2x^2}} * 4x dx} [/mm]

Bereits hier stellt sich mir die Frage, wozu es nötig ist im Zähler das 4x gegen die 1 zu ersetzen um den Bruch dann mit 4x zu multiplizieren, dass verstehe ich nicht :-(

= [mm] \integral_{0}^{2}{f(g(x)) * g'(x) dx} [/mm]

Auch hier weiß ich nicht wieso das der Fall ist :-(

= [mm] \integral_{g (0)}^{g(2)}{f(t) dt} [/mm]
= [mm] \integral_{1}^{9}{\bruch{1}{\wurzel{t}}dt} [/mm]

Davon nun die Stammfunktion und es in den Grenzen von 1 bis 9 ausrechnene.

= 2 [mm] \wurzel{t} [/mm] ist die Stammfunktion, dieses nun in den Grenzen von 1 bis 9 :

= 4

Nun zur 2. Aufgabe.
Da komme ich nicht wirklich weit :-((
b.)

[mm] \integral_{0}^{1}{x^2*e^x^3+1 dx} [/mm]
Substitution :  g(x) = [mm] x^3+1 [/mm]
                       g'(x) = [mm] 3x^2 [/mm]

Hier weiß ich gar nicht wie ich weitermachen muss.
Denn mit fehlt ja dieses f (t) =


Wäre lieb wenn ihr mir hier helfen könntet.
Bin voll verzweifelt, muss die Hausaufgaben irgendwie bis morgen fertig bekommen, will es aber auch verstehen *grrrr*

Hoffe ihr könnt das verständlich erklären.
MfG
Kristof

        
Bezug
Integration durch Substitution: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 05.02.2007
Autor: Zwerglein

Hi, Kristof,

> Berechnen Sie das Intergral mit der angegebenen
> Substitution.
> a. )  [mm]\integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx}[/mm] ;
> g (x) = 1 + [mm]2x^2[/mm]

  

>  Zuerst mal eine Allgemeine Frage, was ist eine
> Substitution, bzw. was möchte ich damit erreichen?
>
> Habe es so verstanden, dass bei schweren Ausgangsfunktionen
> die Substitution helfen kann die Stammfunktion zu finden.
> Richtig?

Richtig. Substitution wird verwendet, wenn man dadurch aus einer schwierigen, fast nicht zu integrierenden Funktion eine einfachere "machen" kann.
  

> [mm]\integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx}[/mm]
>  
> Substitution : g (x) = 1 + [mm]2x^2[/mm] und f (t) = [mm]\bruch{1}{\wurzel{t}}[/mm]

Das mag die mathematisch exakte Methode sein; kürzer und übersichtlicher geht's so:

t = 1 + [mm] 2x^{2} [/mm] (***)

t ist also eine Funktion in der Variablen x. Die kann man ableiten, wobei man für die Ableitung nicht t' schreibt, sondern die Leibniz-Schreibweise verwendet. Das hat den Grund, dass man das x bei der Substitution ja sozusagen "ganz entfernen" und durch t  ersetzen mus, demnach auch das "dx".

Also: (***) abgeleitet ergibt:

[mm] \bruch{dt}{dx} [/mm] = 4x.  | * dx

dt = 4x*dx  (****)  
(Jetzt siehst Du auch, warum man bei Deiner etwas ausführlicheren Schreibweise das 4x zum dx "zieht": 4x*dx wird als Ganzes durch dt ersetzt.)

Naja und nun brauchst Du in der Wurzel nur (***) verwenden und hinterm
Bruchstrich (****) dt.

Die ursprünglichen Grenzen Deines Intervalls beziehen sich natürlich auch auf die "alte" Variable x:
x=0  und x=2.

Die "neuen" Grenzen beziehen sich auf die neue Variable t und werden daher auch mit Hilfe von (***) ausgerechnet:
t = 1 + [mm] 2*0^{2} [/mm] = 1
t = 1 + [mm] 2*2^{2} [/mm] = 9

Insgesamt also:

[mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm]

= [mm] \integral_{1}^{9}{\bruch{1}{\wurzel{t}} dt} [/mm] = ...

Ich denke mal, Deine Probleme lassen sich jetzt schon etwas reduzieren?!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]