matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikIntegration der Kraft
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Integration der Kraft
Integration der Kraft < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration der Kraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:27 Mo 26.01.2009
Autor: phantomic2

Hallo Leute,

und zwar hab ich hier grad Probleme einen Schritt nachzuvollziehen, der beim Beweis der Energieerhaltung in einem Kraftfeld auftaucht.

[mm] \integral_{1}^{1}{\vec{F} d\vec{r}} = m\integral_{t_1}^{t_2} \dot{\vec{v}}(t)\cdot}\vec{v}(t)dt = \integral_{t_1}^{t_2} \frac{d}{dt}(\frac{m}{2}v^2(t))dt [/mm]

Jetzt hab ich allerdings Probleme den letzen Schritt nachzuvollziehen. Da ich auch erst in der 13. bin hab ich noch nicht alzu viel Ahnung von Integration. Also wenn mir vielleicht jemand einen zwischen Schritt erläutern könnte.

Grüße
und vielen Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration der Kraft: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Mo 26.01.2009
Autor: Event_Horizon

Hallo, und [willkommenmr] !

Beide Schritte basieren eigentlich auf recht einfachen Integrationsregeln, sofern man sie erkennt.

Zunächst wir substituiert:

[mm] \vec{a}(\vec{r})\,d\vec{r}=\dot{\vec{v}}(\vec{r})\,d\vec{r} [/mm] , und nun wird [mm] \vec{r} [/mm] gegen t substituiert.

[mm] \vec{a}=\dot{\vec{v}} [/mm] und die Substitutionsvarible: [mm] \frac{d\vec{r}}{dt}=\vec{v}(t)\Rightarrowd\vec{r}=\vec{v}(t)\,dt [/mm]

macht zusammen [mm] \dot{\vec{v}}\vec{v}(t)\,dt [/mm] .

Den nachfolgenden Trick betrachtest du am besten rückwärts. Leite den Ausdruck [mm] (v(t))^2 [/mm] ab. Gemäß Kettenregel (innere mal äußere) ist das doch [mm] 2\dot{v}v [/mm] . Also [mm] \dot{\vec{v}}\vec{v}(t)=\frac{1}{2}\frac{d}{dt}\vec{v}^2 [/mm] . Das ist alles beim zweiten Schritt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]