matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration d.Substitution II
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integration d.Substitution II
Integration d.Substitution II < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration d.Substitution II: Hausaufgaben
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 05.02.2007
Autor: Kristof

Aufgabe
Bestimmen Sie eine Stammfunktion und das Integral.

a.) [mm] \integral_{-2}^{0}{\bruch{3}{\wurzel{1-4x}} dx} [/mm]
b.) [mm] \integral_{0}^{2}{\bruch{4}{2x+5} dx} [/mm]

Hier habe ich auch wieder das Problem.
Wie ich das Integral mit der Stammfunktion berechne, habe ich ja in meinen ersten Hausaufgaben Frage schon gestellt.

Hier kommt noch eine nummer härter :-(
Erstmal brauche ich die Stammfunktion.
Nur weiß ich auch hier nicht,
wie ich die mithilfe von Substitution  bekommen kann
Wäre super wenn ihr mir das an einem Beispiel (vielleicht an der Aufgabe a.) zeigen könntet.

Dann kann ich das bei b.) ja mal versuchen und mein Lösungsweg hier posten.

Dankeschön.
MfG
Kristof

        
Bezug
Integration d.Substitution II: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 05.02.2007
Autor: Kroni

Hallo,

zu Aufgabe b)
Schau dir mal den Nenner und den Zähler an...Tipp: Leite mal den Nenner ab...

zu Aufgabe a)
Auch hier hast kannst du dir sowas erzeugen wie Funktion mal ihre Ableitung...
sry, zu einer kompletten Rechnung habe ich gerade keine Zeit, weil ich jetzt weg muss.
Sry

Slaín,

Kroni

Bezug
        
Bezug
Integration d.Substitution II: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 05.02.2007
Autor: schachuzipus

schachuzipus> Bestimmen Sie eine Stammfunktion und das Integral.
>  
> a.) [mm]\integral_{-2}^{0}{\bruch{3}{\wurzel{1-4x}} dx}[/mm]
>  b.)
> [mm]\integral_{0}^{2}{\bruch{4}{2x+5} dx}[/mm]
>  Hier habe ich auch
> wieder das Problem.
>  Wie ich das Integral mit der Stammfunktion berechne, habe
> ich ja in meinen ersten Hausaufgaben Frage schon gestellt.
>  
> Hier kommt noch eine nummer härter :-(
>  Erstmal brauche ich die Stammfunktion.
>  Nur weiß ich auch hier nicht,
> wie ich die mithilfe von Substitution  bekommen kann
>  Wäre super wenn ihr mir das an einem Beispiel (vielleicht
> an der Aufgabe a.) zeigen könntet.
>  
> Dann kann ich das bei b.) ja mal versuchen und mein
> Lösungsweg hier posten.
>
> Dankeschön.
>  MfG
>  Kristof


Hallo Kristof,

für diese beiden Integrale brauchst du keine Substitution.

(a) [mm] \integral_{-2}^{0}{\bruch{3}{\wurzel{1-4x}} dx}=3*\integral_{-2}^{0}{\bruch{1}{\wurzel{1-4x}} dx}=3*\integral_{-2}^{0}{(1-4x)^{-\bruch{1}{2}} dx}=..... [/mm] den Rest schaffst du ;)

(b) [mm] \integral_{0}^{2}{\bruch{4}{2x+5} dx}=4*\integral_{0}^{2}{\bruch{1}{2x+5} dx}=4*\integral_{0}^{2}{\bruch{1}{2}*\bruch{1}{x+\bruch{5}{2}} dx}=2*\integral_{0}^{2}{\bruch{1}{x+\bruch{5}{2}} dx}=..... [/mm]  Rest machst du ;)


Gruß


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]