matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration R^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Integration R^n
Integration R^n < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration R^n: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 15:33 Sa 03.05.2008
Autor: freshstyle

Aufgabe
Es sei $K [mm] \subset \IR [/mm] $ der Durschnitt der beiden Zylinder
[mm] $Z_1 [/mm] := [mm] \{(x,y,z) \in \IR^3 | x^2+y^2\le1\}$ [/mm]
[mm] $Z_2 [/mm] := [mm] \{(x,y,z) \in \IR^3 | x^2+z^2\le1\}$ [/mm]
man berechne das Volumen von K.

Hallo,
ich brauche ein Wenig Hilfestellung, ich weiß nicht genau wie ich die Fläche parametrisiere .
Anschaulich , ist das Volumen von $K$ ja grade die Kugel + " 4 *Ecken".


        
Bezug
Integration R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Sa 03.05.2008
Autor: MathePower

Hallo freshstyle,

> Es sei [mm]K \subset \IR[/mm] der Durschnitt der beiden Zylinder
>  [mm]Z_1 := \{(x,y,z) \in \IR^3 | x^2+y^2\le1\}[/mm]
>  [mm]Z_2 := \{(x,y,z) \in \IR^3 | x^2+z^2\le1\}[/mm]
>  
> man berechne das Volumen von K.
>  Hallo,
>  ich brauche ein Wenig Hilfestellung, ich weiß nicht genau
> wie ich die Fläche parametrisiere .
>  Anschaulich , ist das Volumen von [mm]K[/mm] ja grade die Kugel + "
> 4 *Ecken".
>  

Bestimme zunächst die Integrationsgrenzen. Diese bekommst aus der Gleichung der Schnittfläche [mm]x^{2}+y^{2}=x^{2}+z^{2}[/mm]
Dies ergibt die Grenzen für z.

Weitere Grenzen bekommst Du wenn die Ungleichung

[mm]0 \le x^{2}+y^{2} \le 1[/mm]

betrachtest. Das ergibt dann die Grenzen für y.

Löst Du das nach y auf, erhält man einen Wurzelausdruck, der nur definiert ist, wenn der Ausdruck unter der Wurzel [mm]\ge 0[/mm] ist. Daraus erhältst Du die Grenzen für x.

Gruß
MathePower

Bezug
                
Bezug
Integration R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 So 04.05.2008
Autor: freshstyle

Hallo,
$ [mm] x^{2}+y^{2}=x^{2}+z^{2} [/mm] $

auflösen nach $ z $
$ [mm] z_1 [/mm] = y $ und $ [mm] z_2 [/mm] = -y $

$ 0 [mm] \le x^{2}+y^{2} \le [/mm] 1 $

wenn ich das nach $ y $ auflöse , erhalte ich als Grenzen für das Integral
$ [mm] \sqrt{1 - x^{2}} [/mm] $ und $- [mm] \sqrt{1 - x^{2}} [/mm] $

Zusammen erhalte ich :

$ [mm] \integral_{1}^{-1}{\integral_{ \sqrt{1 - x^{2}}}^{- \sqrt{1 - x^{2}}}{ \integral_{y}^{-y}{1 * dz*dy*dx}}} [/mm] $

Für x habe ich ein mal 1 , -1 eingesetzt.
Woher weißt ich das das richtig ist?
Danke freshstyle

Bezug
                        
Bezug
Integration R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Mo 05.05.2008
Autor: MathePower

Hallo freshstyle,

> Hallo,
>  [mm]x^{2}+y^{2}=x^{2}+z^{2}[/mm]
>  
> auflösen nach [mm]z[/mm]
>  [mm]z_1 = y[/mm] und [mm]z_2 = -y[/mm]

[ok]

>  
> [mm]0 \le x^{2}+y^{2} \le 1[/mm]
>  
> wenn ich das nach [mm]y[/mm] auflöse , erhalte ich als Grenzen für
> das Integral
> [mm]\sqrt{1 - x^{2}}[/mm] und [mm]- \sqrt{1 - x^{2}}[/mm]

[ok]

>  
> Zusammen erhalte ich :
>  
> [mm]\integral_{1}^{-1}{\integral_{ \sqrt{1 - x^{2}}}^{- \sqrt{1 - x^{2}}}{ \integral_{y}^{-y}{1 * dz*dy*dx}}}[/mm]
>  
> Für x habe ich ein mal 1 , -1 eingesetzt.
>  Woher weißt ich das das richtig ist?

Weil ich auch die Grenzen herausbekommen habe.

Das ist alles richtig, nur hast Du die Grenzen bei der Zusammenfassung verdreht:

[mm]\integral_{-1}^{+1}{\integral_{- \sqrt{1 - x^{2}}}^{+ \sqrt{1 - x^{2}}}{ \integral_{-y}^{+y}{1 * dz*dy*dx}}}[/mm]

>  Danke freshstyle

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]