matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration / Fläche
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integration / Fläche
Integration / Fläche < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration / Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Di 20.09.2011
Autor: Haiza

Aufgabe
Gegeben sei die Funktion $ z=f(x,y)=y [mm] \cdot x^3+2x [/mm] $.
a) Berechnen Sie das Doppelintegral $ [mm] \integral_{x=0}^{2}\integral_{y=0}^{2}{f(x,y) dy dx} [/mm] $
b) Das Doppelintegral aus Teil a) kann man auch als Integral über eine Fläche A schreiben: $ [mm] \integral_{A}^{}\integral_{}^{}{f(x,y) dA} [/mm] $ Skizzieren Sie die Fläche A in der x-y-Ebene.

Hallo,
a) habe ich berechnet, jedoch weiß ich nicht genau welche Fläche ich zeichnen soll und woher ich weiß, wie diese Aussieht.

Habt ihr Tipps und Hilfen?

Danke im Voraus!

Gruß

        
Bezug
Integration / Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Di 20.09.2011
Autor: Al-Chwarizmi


> Gegeben sei die Funktion [mm]z=f(x,y)=y \cdot x^3+2x [/mm].
>  a)
> Berechnen Sie das Doppelintegral
> [mm]\integral_{x=0}^{2}\integral_{y=0}^{2}{f(x,y) dy dx}[/mm]
>  b)
> Das Doppelintegral aus Teil a) kann man auch als Integral
> über eine Fläche A schreiben:
> [mm]\integral_{A}^{}\integral_{}^{}{f(x,y) dA}[/mm] Skizzieren Sie
> die Fläche A in der x-y-Ebene.
>  Hallo,
>  a) habe ich berechnet, jedoch weiß ich nicht genau welche
> Fläche ich zeichnen soll und woher ich weiß, wie diese
> Aussieht.


Hallo Haiza,

in diesem Fall ist das ganz einfach. Die Integrations-
grenzen zeigen, dass sowohl x als auch y von 0 bis 2
laufen sollen. In der x-y-Ebene betrachtet ist also das
Integrationsgebiet A das entsprechende Quadrat.
Das Differential dA des Flächeninhalts kann man sich
als den (infinitesimalen) Inhalt eines Rechtecks auf-
fassen, dessen Seiten parallel zu den Achsen sind
und die (ebenfalls infinitesimalen) Seitenlängen dx
und dy haben. Es ist   $\ dA\ =\ dx*dy$

LG   Al-Chw.

Bezug
                
Bezug
Integration / Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:44 Di 20.09.2011
Autor: Haiza

Also ist ein Rechteck zu zeichen was diese vier Eckpunkte besitzt:
[mm] $P_1=[0;0] [/mm] $
[mm] $P_2=[2;0] [/mm] $
[mm] $P_3=[2;2] [/mm] $
[mm] $P_4=[0;2] [/mm] $
?

Gruß

Bezug
                        
Bezug
Integration / Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Di 20.09.2011
Autor: kamaleonti

Hallo haiza,
> Also ist ein Rechteck zu zeichen was diese vier Eckpunkte besitzt:
>  [mm]P_1=[0;0][/mm]
>  [mm]P_2=[2;0][/mm]
>  [mm]P_3=[2;2][/mm]
>  [mm]P_4=[0;2][/mm]
>  ?

Ja, es handelt sich sogar um ein Quadrat.

>  
> Gruß

LG


Bezug
                                
Bezug
Integration / Fläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Di 20.09.2011
Autor: Haiza

Danke :-) !

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]