matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegration/Ansatz zu einfach?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Integration/Ansatz zu einfach?
Integration/Ansatz zu einfach? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration/Ansatz zu einfach?: Frage
Status: (Frage) beantwortet Status 
Datum: 19:07 Di 04.01.2005
Autor: Limschlimm

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute.

Folgendes Integral habe ich so gelöst:

[Dateianhang nicht öffentlich]

Nun zu Meiner Frage:

Ist der Lösungsweg richtig? (Das Ergebnis stimmt)
Oder Kam nur durch Zufall das Richtige Ergebnis raus??

Vielen dank im vorraus.

Viele Grüße!!


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Integration/Ansatz zu einfach?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Di 04.01.2005
Autor: Hanno

Hallo Limschlimm!

Du hast dich ein Mal vertan. Es muss heißen:
[mm] $\frac{du}{dx}=cos(x)$ [/mm] und nicht [mm] $\frac{dx}{du}=cos(x)$. [/mm] Dein nächstes Zwischenergebnis ist allerdings auf Grund eines UMformungsfehlers wieder korrekt und die darauffolgende Rechnung ebenso. [ok]

Liebe Grüße,
Hanno

Bezug
                
Bezug
Integration/Ansatz zu einfach?: Zusatz
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 04.01.2005
Autor: Limschlimm

Na gott sei dank ;)

Danke für deine Hilfe!

Eien Frge hätt ich noch:

die Formel in dem Grauen Rechteck stellt doch auch ein Produkt dar, stimmts? Käme man auch mit Produktintegration auf das richtige ergebnis?
Wenn ja, kann man dann bei Produkten, die Integriert werden müssen, wahlweise mit Substitution arbeiten oder ist bei Gleichungen

z.B. x  [mm] \* [/mm] sin(x) ZWINGEND Produktintegration vorgeschrieben?

Denn ich habe im Moment mit noch einem Integral zu kämpfen:

[Dateianhang nicht öffentlich]

Wenn ich produktintegration anwende, dann bekomm ich eine riesige Glaichung raus, die einfach nicht einfacher wird!

viele Grüße



Dateianhänge:
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Integration/Ansatz zu einfach?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 04.01.2005
Autor: andreas

hallo

> Eien Frge hätt ich noch:
>
> die Formel in dem Grauen Rechteck stellt doch auch ein
> Produkt dar, stimmts? Käme man auch mit Produktintegration
> auf das richtige ergebnis?

das ist durchaus möglich. im moment sehe ich das aber nicht direkt, dass das zum ziel führt.


>  Wenn ja, kann man dann bei Produkten, die Integriert
> werden müssen, wahlweise mit Substitution arbeiten oder ist
> bei Gleichungen
>  
> z.B. x  [mm]\*[/mm] sin(x) ZWINGEND Produktintegration
> vorgeschrieben?

zwingend vorgeschrieben ist das nicht, nur mit einem anderen ansatz denke ich, dass man nicht allzuschell das richtige resultat erhält!
man wählt also in der regel den vielversprechendern weg. da entwickelt man mit der zeit wohl ein gefühl dafür?


> Denn ich habe im Moment mit noch einem Integral zu
> kämpfen:
>  
> [Dateianhang nicht öffentlich]
>  
> Wenn ich produktintegration anwende, dann bekomm ich eine
> riesige Glaichung raus, die einfach nicht einfacher wird!

in diesem fall bietet sich auf jeden fall die substitution [m] u = x^2 - 1 [/m] an, da sich dann das $x$ vor dem [mm] $\ln$ [/mm] kürzt.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]