matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Sa 21.07.2012
Autor: yuppi

Hallo Zusammen

[mm] \integral_{a}^{b}{cos^2(2x) dx} [/mm]

Mein Vorgen:              
u= Substitution = 2x

dx= [mm] \bruch{1du}{2} [/mm]



[mm] \integral_{a}^{b}{COS^2(2u) du} [/mm]


Und nun ? Wie integriere ich diesen cosinus ?? Ist ja leider hoch 2...


        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Sa 21.07.2012
Autor: Diophant

Hallo,

> Und nun ? Wie integriere ich diesen cosinus ?? Ist ja
> leider hoch 2...

Das Zauberwort heißt hier: zweifache partielle Integration. :-)


Gruß, Diophant

Bezug
                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Sa 21.07.2012
Autor: yuppi

wie hast du das denn gesehen ??

Schneller geht es leider nicht ??

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:19 Mo 23.07.2012
Autor: yuppi

Hmmm

Ich komme leider über Partielle Ableitung nicht zum Ziel.

[mm] \integral_{}^{}{\cos(2x) * \cos(2x) dx} [/mm]

Da habe ich auch nach zwei mal partiell integrieren ein Produkt...

Wie gehts über Partielle Integration ??

Gruß yuppi

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 05:30 Mo 23.07.2012
Autor: angela.h.b.


> Hmmm
>  
> Ich komme leider über Partielle Ableitung nicht zum Ziel.
>  
> [mm] \integral_{}^{} [/mm] cos(2x) * cos(2x) dx

Hallo,

dann zeig doch erstmal, was Du nach der partiellen Integration dastehen hast. Wie sollen wir Dir sonst helfen?

Wenn es richtig ist, kannst Du [mm] 1=sin^2\alpha+cos^2\alpha [/mm] gut gebrauchen.
Und kurz darauf hilft die Erkenntnis, daß
x=8-x <==> 2x=8 <==> x=4 ...

Mach mal.

>  
> Da habe ich auch nach zwei mal partiell integrieren ein
> Produkt...

Ich muß hier nicht zweimal partiell integrieren.
Aber ich muß zweimal integrieren.

LG Angela

>  
> Wie gehts über Partielle Integration ??
>  
> Gruß yuppi


Bezug
        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Sa 21.07.2012
Autor: Valerie20

Hi!

> Hallo Zusammen
>  
> [mm]\integral_{a}^{b}{cos^2(2x) dx}[/mm]
>
> Mein Vorgen:              
> u= Substitution = 2x

[ok]

> dx= [mm]\bruch{1du}{2}[/mm]
>  

[ok]

>
> [mm]\integral_{a}^{b}{COS^2(2u) du}[/mm]


[notok]

Mit Substitution würde es auch gehen. Allerdings hast du hier schon einen Fehler.
Du hast falsch eingesetzt.
Mit [mm]u=2x[/mm] und [mm]dx=\frac{1}{2}du[/mm] folgt doch:

[mm] \red{EDIT} [/mm]

[mm] \textcolor{red}{Die-Integrationsgrenzen- muessen- natuerlich- noch-angepasst -werden.} [/mm]

[mm]\frac{1}{2}\integral_{\red{2a}}^{\red{2b}}{cos^2(u) du}[/mm]

Jetzt nur noch ein passendes Additionstheorem auf das [mm]cos^2(u)[/mm] anwenden. Ich tendiere zu: [mm]cos^2(x)=\frac{1}{2}\cdot(1+cos(2x))[/mm]

Das kannst du dann wunderbar integrieren.
Mit der Methode von Diophant funktioniert es genauso.

Valerie


Bezug
                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 Sa 21.07.2012
Autor: Diophant

Hallo,

> Mit der Methode von Diophant funktioniert es genauso.

Aber die Methode von Valerie20 ist besser. :-)


Gruß, Diophant


Bezug
                        
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Sa 21.07.2012
Autor: Valerie20

Hallo Diophant,

> Hallo,
>  
> > Mit der Methode von Diophant funktioniert es genauso.
>  
> Aber die Methode von Valerie20 ist besser. :-)

In diesem speziellen Fall kommt man damit vermutlich wirklich schneller zum Ziel. :-)
Da es sich wenn ich mich nicht irre auf den Typ "Phönix" herausläuft bei der partiellen Integration, wäre es in diesem Fall mit Sicherheit nicht schlecht diese Variante auch mal zu rechnen.

> Gruß, Diophant
>  

Valerie


Bezug
                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:49 So 22.07.2012
Autor: fred97


> Hi!
>  
> > Hallo Zusammen
>  >  
> > [mm]\integral_{a}^{b}{cos^2(2x) dx}[/mm]
> >
> > Mein Vorgen:              
> > u= Substitution = 2x
>  
> [ok]
>  
> > dx= [mm]\bruch{1du}{2}[/mm]
>  >  
>
> [ok]
>  
> >
> > [mm]\integral_{a}^{b}{COS^2(2u) du}[/mm]
>  
>
> [notok]
>
> Mit Substitution würde es auch gehen. Allerdings hast du
> hier schon einen Fehler.
>  Du hast falsch eingesetzt.
>  Mit [mm]u=2x[/mm] und [mm]dx=\frac{1}{2}du[/mm] folgt doch:
>  
> [mm]\frac{1}{2}\integral_{a}^{b}{cos^2(u) du}[/mm]

Das stimmt nicht. Die Integrationsgrenzen sollten auch substituiert werden !

FRED

>  
> Jetzt nur noch ein passendes Additionstheorem auf das
> [mm]cos^2(u)[/mm] anwenden. Ich tendiere zu:
> [mm]cos^2(x)=\frac{1}{2}\cdot(1+cos(2x))[/mm]
>  
> Das kannst du dann wunderbar integrieren.
>  Mit der Methode von Diophant funktioniert es genauso.
>  
> Valerie
>  


Bezug
                        
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:34 So 22.07.2012
Autor: Valerie20

Hi!
Danke, habe es ausgebessert.
Valerie



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]