matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Integration
Integration < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 30.06.2005
Autor: Pompeius

Hi leute !

ich hab mal wieder ein paar probleme bei diesen komischen algebra-sachen die ein integral ja meistens so mit sich bringt...  

f(x)= [mm] kx^2 [/mm] + 1      A = 4  

x= [mm] \wurzel{ \bruch{-1}{k}} [/mm]    <--- grenze ergibt sich durch 0 setzten


[mm] 2*\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2 [/mm]

F(x) = [mm] \bruch{1}{3}kx^3+x [/mm]

jetzt setzt ich die grenze ein :

1/3k* [mm] (-\bruch{1}{k})^3/2 [/mm] + (- [mm] \bruch{1}{k})^1/2 [/mm] =2

1/3(- [mm] \bruch{1}{k}^6/2) [/mm] + (- [mm] \bruch{1}{k})^1/2 [/mm] =2

1/6(- [mm] \bruch{1}{k}) [/mm] + (- [mm] \bruch{1}{k})= [/mm] 2

jetzt komm ich irgendwie nicht weiter...wär nett wenn mir jemand helfen könnte !!

danke schon mal

ich habe diese frage in keinem anderen forum gestellt






        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Do 30.06.2005
Autor: angela.h.b.


> Hi leute !
>  
> ich hab mal wieder ein paar probleme bei diesen komischen
> algebra-sachen die ein integral ja meistens so mit sich
> bringt...  
>
> f(x)= [mm]kx^2[/mm] + 1      A = 4  
>
> x= [mm]\wurzel{ \bruch{-1}{k}}[/mm]    <--- grenze ergibt sich durch
> 0 setzten

Hallo,

hier stellen wir mal sicherheitshalber fest, daß k<0 sein muß, ob man es später benötigt, weiß ich nicht.

>  
>
> [mm]2*\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2[/mm]

Hm. Ist das ein Schreibfehler, oder hast Du Dir was dabei gedacht? Oben stand A=4. Achso, das ist bestimmt nur schusselig, Du meinst sicher
[mm]\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2[/mm]


>  
> F(x) = [mm]\bruch{1}{3}kx^3+x[/mm]

Die Stammfunktion ist richtig.

>  
> jetzt setzt ich die grenze ein :
>  
> 1/3k* [mm](-\bruch{1}{k})^3/2[/mm] + (- [mm]\bruch{1}{k})^1/2[/mm] =2

Stimmt.
Aber im nächsten Schritt ist was schief gegangen.

Gucken wir uns mal  [mm](-\bruch{1}{k})^3/2[/mm]  an:
Es ist  [mm](-\bruch{1}{k})^3/2[/mm] = [mm]((-\bruch{1}{k})^3)^1/2[/mm] = [mm] (\bruch{1}{k^{2}}*(-\bruch{1}{k}))^{1/2} =\bruch{1}{k}(-\bruch{1}{k})^{1/2} [/mm]

Ich könnte mir vorstellen, daß Du so schon weiterkommst.
Gruß v. Angela

Bezug
        
Bezug
Integration: Erklärung
Status: (Antwort) fertig Status 
Datum: 19:15 Do 30.06.2005
Autor: informix

Hallo Pompeius,

>  
> ich hab mal wieder ein paar probleme bei diesen komischen
> algebra-sachen die ein integral ja meistens so mit sich
> bringt...  
>
> f(x)= [mm]kx^2[/mm] + 1      A = 4  
>
> x= [mm]\wurzel{ \bruch{-1}{k}}[/mm]    <--- grenze ergibt sich durch
> 0 setzten
>  
>
> [mm]2*\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2[/mm]
>  
> F(x) = [mm]\bruch{1}{3}kx^3+x[/mm]
>  
> jetzt setzt ich die grenze ein :
>  
> 1/3k* [mm](-\bruch{1}{k})^3/2[/mm] + (- [mm]\bruch{1}{k})^1/2[/mm] =2

schau dir mal unseren Formeleditor genauer an, damit man deine Formeln besser lesen kann:

[mm] $\bruch{1}{3}k*(\wurzel{-\bruch{1}{k}})^3 [/mm] + [mm] \wurzel{\bruch{-1}{k}} [/mm] = 4$
bei längeren Formeln genügt ein '$' oder '[ mm]' jeweils vorn und hinten; klick mal auf meine Formel!

> 1/3(- [mm]\bruch{1}{k}^6/2)[/mm] + (- [mm]\bruch{1}{k})^1/2[/mm] =2

hier verhedderst du dich in deiner Schreibweise!
[mm] $\bruch{1}{3}(\bruch{-1}{k})^{\red{6/2}}+ (\bruch{-1}{k})^{1/2}[/mm] [/mm] =2$
die 6 ist falsch!

[mm] $-\bruch{1}{3} \wurzel{\bruch{-1}{k}} [/mm] + [mm] \wurzel{\bruch{-1}{k}} [/mm] = 4$
Jetzt solltest du es wirklilch allein lösen können.
Mein Ergebnis: $k = - [mm] \bruch{1}{36}$ [/mm] - nachrechnen!!

>  
> 1/6(- [mm]\bruch{1}{k})[/mm] + (- [mm]\bruch{1}{k})=[/mm] 2
>  
> jetzt komm ich irgendwie nicht weiter...wär nett wenn mir
> jemand helfen könnte !!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]