matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: integral
Status: (Frage) beantwortet Status 
Datum: 20:00 Mo 24.09.2007
Autor: fuchsone

Aufgabe
Wir betrachten die Funktion

[mm] f:[0,\infty[ \to \IR f(x)=(-1)^{[x]} \* [/mm] 1/[x] + 1

wobei [x] die größte ganze Zahl kleiner oder gleich x bezeichnet.

Man zeige dass das Integral [mm] \integral_{0}^{\infty}{f(x) dx} [/mm] erxistiert und berechne es.

ich versteh nicht wie ich nun [x] wählen soll
oder soll ich nur von f(x) die Stammfkt bilden und dann den limes bestimmen?

        
Bezug
Integration: Gaußklammer
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Mo 24.09.2007
Autor: Bastiane

Hallo fuchsone!

> Wir betrachten die Funktion
>
> [mm]f:[0,\infty[ \to \IR f(x)=(-1)^{[x]} \*[/mm] 1/[x] + 1
>  
> wobei [x] die größte ganze Zahl kleiner oder gleich x
> bezeichnet.
>
> Man zeige dass das Integral [mm]\integral_{0}^{\infty}{f(x) dx}[/mm]
> erxistiert und berechne es.
>  ich versteh nicht wie ich nun [x] wählen soll
>  oder soll ich nur von f(x) die Stammfkt bilden und dann
> den limes bestimmen?

Kennst du die []Gaußklammer [mm] \lfloor{x}\rfloor [/mm] oder vielleicht [mm] \lceil{x}\rceil? [/mm] So ähnlich ist hier wohl auch dein [x] gemeint, und damit sollst du wohl "einfach nur" das Integral lösen.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Mo 24.09.2007
Autor: rainerS

Hallo!

> Wir betrachten die Funktion
>
> [mm]f:[0,\infty[ \to \IR f(x)=(-1)^{[x]} \*[/mm] 1/[x] + 1

Heisst die wirklich so? Denn so ist sie für [mm]0\le x<1[/mm] nicht definiert: für solche x ist [x]=0 und 1/[x] undefiniert.

Oder meinst du:

[mm]f(x)=-1^{[x]}\bruch{1}{[x]+1[/mm]?

Mal dir doch diese Funktion auf, dann siehst du auch, wie du das Integral berechnen kannst.

Viele Grüße
  Rainer


Bezug
                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Mo 24.09.2007
Autor: fuchsone

ja genau so sieht es aus ich kanns nicht so gut wie du^^

wenn ich mir werte ausrechen will wie z.B. [mm] -1^{-0,5} [/mm] zeigt mir der taschenrechner E irgenwie rechne ich falsch aber wieso kann ich nicht für [x] eine beliebige zahl einsetzten?

Bezug
        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Mo 24.09.2007
Autor: schachuzipus

Hallo fuchsone,

zunächst betrachten wir nur [mm] $x\ge [/mm] 0$, da [mm] $\int\limits_{0}^{\infty}f(x)\, [/mm] dx$ zu lösen ist.

Wenn du dir nochmal genau die Definition von $[x]$ ansiehst oder den

Verlauf des Graphen auf Bastianes wikipedia-link, dann siehst du doch,

dass man $[x]$ "intervallweise" definieren kann.

Es ist $[x]=0$ auf dem Intervall $[0;1)$ , $[x]=1$ auf dem Intervall $[1;2)$ , $[x]=2$ auf $[2;3)$ usw.

Damit kann man doch mal versuchen, $f(x)$ anschaulicher aufzuschreiben.

Wenn ich mich nicht ganz vertan habe, ist das m.E.

[mm] $f(x)=\begin{cases} \frac{1}{2k+1}, & \mbox{für } x\in [2k;2k+1) \\-\frac{1}{2k+2}, & \mbox{für } x\in [2k+1;2k+2)\end{cases}$ [/mm] für $k=0,1,....$

Übertrage diese Definition mal in ein Koordinatensystem und du wirst sehen , dass sich das Integral aus lauter Rechtecksummen zusammensetzt...


Stichwort "alternierende harmonische Reihe"...


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]