matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integration
Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Substitution
Status: (Frage) beantwortet Status 
Datum: 21:59 So 09.02.2014
Autor: sonic5000

Hallo,
folgendes Integral soll gelöst werden:

[mm] \integral{\wurzel{ln(x)}*\bruch{1}{x}dx} [/mm]

Mein Ansatz:

Substitution:

u=ln(x)

Dann:

[mm] dx=2x\wurzel{ln(x)}du [/mm]

Eingesetzt:

[mm] \integral{u*2x\wurzel{ln(x)}*\bruch{1}{x}du} [/mm]

[mm] \integral{u*2\wurzel{ln(x)}du} [/mm]

Hier bin ich mir nicht ganz sicher... Kann ich jetzt wieder für u den ln(x) einsetzen?

Dann käme ich auf:

[mm] 2\integral{ln(x)dx} [/mm]

Und somit auf:

2x(ln(x)-1)

Ist nicht richtig... Wo habe ich den Fehler gemacht?

LG und besten Dank im Voraus...

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 So 09.02.2014
Autor: moody


> Hallo,
>  folgendes Integral soll gelöst werden:
>  
> [mm]\integral{\wurzel{ln(x)}*\bruch{1}{x}dx}[/mm]
>  
> Mein Ansatz:
>  
> Substitution:
>  
> u=ln(x)

[ok]

> Dann:
>  
> [mm]dx=2x\wurzel{ln(x)}du[/mm]

Ab hier kann ich dir nicht mehr folgen.

Es ist

$u = ln(x)$
[mm] $\bruch{du}{dx}=1/x$ [/mm]

Du möchtest ja nun, da du x durch u ersetzt hast, auch gerne nach du integrieren. Dazu muss dein dx ersetzt werden.

Reicht das als Anstoß?

lg moody

Bezug
                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 So 09.02.2014
Autor: sonic5000

Hallo,
ich hatte einen doppelten Fehler drinne... Ich habe zwar u=ln(x) hingeschrieben, was wohl der richtige Ansatz ist, aber habe die Rechnung dann mit der Substitution [mm] u=\wurzel{ln(x)} [/mm] fortgesetzt... Muss ich nochmal nachrechnen...

LG

Bezug
        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 So 09.02.2014
Autor: reverend

Hallo sonic,

>  folgendes Integral soll gelöst werden:
>  
> [mm]\integral{\wurzel{ln(x)}*\bruch{1}{x}dx}[/mm]

Da steht als Integrand doch im Prinzip $g'(f(x))*f'(x)$. Das sollte Dir bekannt vorkommen, nämlich als Kettenregel der Differentiation.

Damit kannst Du das Ergebnis eigentlich direkt hinschreiben. Substitution klappt natürlich auch, logischerweise mit dem gleichen Ergebnis.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]