matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrand umschreiben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integrand umschreiben
Integrand umschreiben < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrand umschreiben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Mo 03.03.2014
Autor: Feanor234

Hallo,
bräuchte bitte Hlfe bei folgender Aufgabe:
Integriert werden soll:
Integral 4x/(2+x) +x²/4
In der Lösung wird der Integrand umgeschrieben auf
Integral 4 - 8/(2+x) + x²/4

Wie komme ich auf das 4 - 8/(2+x)
Steh hier total am Schlauch....
Danke!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Integrand umschreiben: zwei Wege
Status: (Antwort) fertig Status 
Datum: 18:49 Mo 03.03.2014
Autor: Loddar

Hallo Feanor!


Entweder führst Du hier eine MBPolynomdivision für [mm]4x \ : \ (x+2)[/mm] durch.

Oder Du formst um wie folgt:

[mm]\bruch{4x}{x+2} \ = \ \bruch{4x \ \red{+8-8}}{x+2} \ = \ \bruch{4x+8}{x+2}+\bruch{-8}{x+2} \ = \ \bruch{4*(x+2)}{x+2}-\bruch{8}{x+2} \ = \ 4-\bruch{8}{x+2}[/mm]


Gruß
Loddar

Bezug
                
Bezug
Integrand umschreiben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Mo 03.03.2014
Autor: Feanor234

Ok, danke.
Das muss man erstmal sehen.... :-)


Bezug
        
Bezug
Integrand umschreiben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Mo 03.03.2014
Autor: Feanor234

ok, jetzt noch ne Frage
[mm] \integral_{a}^{b}{f(x) dx}(\bruch{x}{4}+\bruch{4}{2+x})^2 [/mm]
ergibt lt. Lösung:
[mm] \bruch{x^2}{16}+2-\bruch{4}{x+2}+\bruch{16}{(x+2)^2} [/mm]

Komme ich trotzdem auf das 2- 4/(x+2) ... Ich muss doch vorher quadrieren?

Bezug
                
Bezug
Integrand umschreiben: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Mo 03.03.2014
Autor: leduart

Hallo
das ist nicht das Ergebnis des Integrals, sondern einfach die Klammer quadriert.
und dabei 2x/(x+2) ersetzt durch 2-4/(x+2)
was ist nun eigentlich die genaue Aufgabe.
Gruss leduart

Bezug
                        
Bezug
Integrand umschreiben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Mo 03.03.2014
Autor: Feanor234

Ich soll das Stammintegral finden. Das ist soweit ok und kann ich nachvollziehen. Ich verstehe aber nicht wie man auf das 2 - 4/2+x komm.
Sorry

Bezug
                                
Bezug
Integrand umschreiben: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Mo 03.03.2014
Autor: leduart

Hallo
du hattest daselbe für 4x(/x+2) gefragt, 2x/x+2 ist davon einfach die Hälfte.
rechne das Quadrat binom. formel aus danach forme um
sttt wie Loddar gezeigt har kannst du auch einfach den Anfang einer Polynomdivision machen (immer wenn der Zählergrad größer oder gleich dem Nennergrad ist)
alos 2x:(x+2)=2 Rest -2/(x+2)
Gruß leduart

Bezug
                                        
Bezug
Integrand umschreiben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Mo 03.03.2014
Autor: Feanor234

Hallo,

müsste hier nicht bei der Polynomdivision 2 Rest -4/x+2 sein?

Wenn ich aber die Klammer quadriere dann komm ich auf [mm] 16/(2+x)^2 [/mm] + 8x/(8+4X) [mm] +x^2/16 [/mm]

Bezug
                                                
Bezug
Integrand umschreiben: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mo 03.03.2014
Autor: chrisno


> Hallo,
>  
> müsste hier nicht bei der Polynomdivision 2 Rest -4/x+2
> sein?

ja

>  
> Wenn ich aber die Klammer quadriere dann komm ich auf
> [mm]16/(2+x)^2[/mm] + 8x/(8+4X) [mm]+x^2/16[/mm]

Was ist das Problem?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]