matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikIntegralsubstitution Normalv.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - Integralsubstitution Normalv.
Integralsubstitution Normalv. < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsubstitution Normalv.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Sa 17.01.2015
Autor: Rabenhorst

Hallo,

ich habe heute in einem Buch von Lothar Papula (*) gelesen wie man die Verteilungsfunktion einer Normalverteilung in Standardnormalverteilung überführt. Es steht dort in etwa so:

Die Zufallsvariable t ist normalverteilt mit der Standardabweichung sigma.

t wird mit folgender Formel in eine standardnormalverteilte Zufallsvariable u übergeführt:

  u= [mm] \bruch{t-u}{sigma} [/mm]

Dann wird folgender Zusammenhang präsentiert, welcher für die Integralssubstitution benutzt wird:

[mm] \bruch{du}{dt} = \bruch{1}{sigma} [/mm]

Meine Frage:

Wie leitet man diesen Zusammenhang her?

Viele Grüße

rabenhorst

*Mathematik für Ingenenieure und Naturwissenschaftler, Band 3, 3. Auflage, S. 374, II, 6.4.4 Berechnung von Wahrscheinlichkeiten mit Hilfe der tabellierten Verteilungsfunktion der Standardnormalverteilung,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralsubstitution Normalv.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Sa 17.01.2015
Autor: DieAcht

Hallo Rabenhorst und [willkommenmr]!


> t wird mit folgender Formel in eine standardnormalverteilte
> Zufallsvariable u übergeführt:
>  
> u= [mm] \bruch{t-u}{sigma}[/mm]

Falsch. Richtig:

      [mm] u=\frac{t-\mu}{\sigma}. [/mm]

> Dann wird folgender Zusammenhang präsentiert, welcher für
> die Integralssubstitution benutzt wird:
>  
> [mm]\bruch{du}{dt} = \bruch{1}{sigma}[/mm]
>  
> Meine Frage:
>  
> Wie leitet man diesen Zusammenhang her?

Mit der Korrektur folgt

      [mm] \frac{du}{dt}=\frac{d}{dt}\left(\frac{t-\mu}{\sigma}\right)=\frac{1}{\sigma}. [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Integralsubstitution Normalv.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Mo 19.01.2015
Autor: Rabenhorst

Hallo DieAcht,

vielen Dank für deine Antwort und für das freundliche Willkommen.

Du hast Recht. Es muss my heißen und nicht u.

Zu der Antwort habe ich noch drei Fragen:

1)
Wie schaffst du es das my als Symbol zu schreiben?

Mit [ mm] \ mi [ /mm] bzw. [ mm] \ my [ /mm] kriege ich es nicht hin.

Anmerkung: Die sechs falschen Leerzeichen habe ich absichtlich gesetzt, damit du siehst welche Formel ich verwende.

2)

[mm] \bruch{d}{dt} [/mm] heißt ja nach dt ableiten.

Eigentlich hätte ich da draufkommen können da man ja auch in der Schule bei der Integralsubstitution mit dem dt so umgeht als wäre es eine Variable.

Damit will ich sagen dass ich nie verstanden habe warum man damit rechnen kann. Ich habe es also nie als Teil der Rechnung gesehen sondern mehr als ein Ordnungszeichen, das einem sagt wo das Integral aufhört und nach was man integrieren soll.

Jetzt zu meiner Frage: Kannst du mir einen Tipp geben wie ich besser verstehen kann warum man mit dem dt rechnen kann? Also warum es eher so etwas ist wie eine Zahl und weniger so etwas wie ein Pluszeichen.

Ich hoffe mal ich konnte damit rüberbringen was mein Problem ist.

3)
Die Rechnung im Detail läuft ja dann so ab:

[mm] u= \bruch{t-my}{\sigma} [/mm]           [mm] * \bruch{d}{dt} [/mm]

[mm] \bruch{du}{dt}=\bruch{d}{dt} * \bruch{t}{\sigma}-\bruch{d}{dt}*\bruch{my}{\sigma} [/mm]

Da der Ausdruck [mm] \bruch{d}{dt}*\bruch{my}{\sigma} [/mm] kein t enthält fällt er durch die Ableitung weg und man erhält:

[mm] \bruch{du}{dt}=\bruch{1}{\sigma}[/mm]

Richtig, oder?

Vielen Dank nochmal für deine Mühe.

rabenhorst



Bezug
                        
Bezug
Integralsubstitution Normalv.: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Di 20.01.2015
Autor: fred97


> Hallo DieAcht,
>  
> vielen Dank für deine Antwort und für das freundliche
> Willkommen.
>  
> Du hast Recht. Es muss my heißen und nicht u.
>  
> Zu der Antwort habe ich noch drei Fragen:
>  
> 1)
>  Wie schaffst du es das my als Symbol zu schreiben?
>  
> Mit [ mm] \ mi [ /mm] bzw. [ mm] \ my [ /mm] kriege ich es
> nicht hin.
>  
> Anmerkung: Die sechs falschen Leerzeichen habe ich
> absichtlich gesetzt, damit du siehst welche Formel ich
> verwende.

Fahr mal mit der Maus drüber:  [mm] $\mu$ [/mm]

>  
> 2)
>  
> [mm]\bruch{d}{dt}[/mm] heißt ja nach dt ableiten.

Ja.


>  
> Eigentlich hätte ich da draufkommen können da man ja auch
> in der Schule bei der Integralsubstitution mit dem dt so
> umgeht als wäre es eine Variable.
>  
> Damit will ich sagen dass ich nie verstanden habe warum man
> damit rechnen kann. Ich habe es also nie als Teil der
> Rechnung gesehen sondern mehr als ein Ordnungszeichen, das
> einem sagt wo das Integral aufhört und nach was man
> integrieren soll.
>  
> Jetzt zu meiner Frage: Kannst du mir einen Tipp geben wie
> ich besser verstehen kann warum man mit dem dt rechnen
> kann? Also warum es eher so etwas ist wie eine Zahl und
> weniger so etwas wie ein Pluszeichen.

Pluszeichen ?????


>  
> Ich hoffe mal ich konnte damit rüberbringen was mein
> Problem ist.
>  
> 3)
>  Die Rechnung im Detail läuft ja dann so ab:
>  
> [mm]u= \bruch{t-my}{\sigma}[/mm]           [mm]* \bruch{d}{dt}[/mm]
>  
> [mm]\bruch{du}{dt}=\bruch{d}{dt} * \bruch{t}{\sigma}-\bruch{d}{dt}*\bruch{my}{\sigma}[/mm]
>  
> Da der Ausdruck [mm]\bruch{d}{dt}*\bruch{my}{\sigma}[/mm] kein t
> enthält fällt er durch die Ableitung weg und man
> erhält:
>  
> [mm]\bruch{du}{dt}=\bruch{1}{\sigma}[/mm]
>  
> Richtig, oder?

Na ja.

Wir haben

  [mm] u(t)=\bruch{t-\mu}{\sigma}= \bruch{t}{\sigma}-\bruch{\mu}{\sigma} [/mm]

Jetzt leiten wir nach t ab. Da [mm] \bruch{\mu}{\sigma} [/mm] bezüglich t konstant ist, ist die Ableitung von [mm] \bruch{\mu}{\sigma} [/mm] nach t  0.

Also:

  [mm] u'(t)=\bruch{du}{dt}=\bruch{1}{\sigma} [/mm]

FRED

>  
> Vielen Dank nochmal für deine Mühe.
>  
> rabenhorst
>  
>  


Bezug
                                
Bezug
Integralsubstitution Normalv.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Di 20.01.2015
Autor: Rabenhorst

Hallo Fred,

  

> Fahr mal mit der Maus drüber:  [mm]\mu[/mm]

Ah, mu, danke für die Antwort und den Tipp mit der Maus.
  


> > Eigentlich hätte ich da draufkommen können da man ja auch
> > in der Schule bei der Integralsubstitution mit dem dt so
> > umgeht als wäre es eine Variable.
>  >  
> > Damit will ich sagen dass ich nie verstanden habe warum man
> > damit rechnen kann. Ich habe es also nie als Teil der
> > Rechnung gesehen sondern mehr als ein Ordnungszeichen, das
> > einem sagt wo das Integral aufhört und nach was man
> > integrieren soll.
>  >  
> > Jetzt zu meiner Frage: Kannst du mir einen Tipp geben wie
> > ich besser verstehen kann warum man mit dem dt rechnen
> > kann? Also warum es eher so etwas ist wie eine Zahl und
> > weniger so etwas wie ein Pluszeichen.
>  
> Pluszeichen ?????

Damit meinte ich, dass mir noch das Verständniss dafür fehlt das dt am Ende eines Integrals von einem Operator (z.B. einem Pluszeichen) abzugrenzen. Denn bei der Integralsubstitution rechnet man ja mit dem dt. Oder anders gesagt man behandelt das dt wie einen Operand und nicht wie einen Operator.

Ich werde mir das selbst nochmal ansehen.

Meine eigentliche Frage betrachte ich als beantwortet. Vielen Dank für eure Hilfe.

Viele Grüße

rabenhorst
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]