Integralskalierung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 23:37 Do 14.01.2016 | Autor: | Hias |
Hallo,
ich versuche gerade einen Beweis nachzuvollziehen.
Darin betrachtet man das Integral in m Dimensionen
[mm] $$\integral_{|x-y|=\rho} {\bruch{\partial u}{\partial \nu} dS}$$
[/mm]
Dieses Integral wird im nächsten Schritt umgeschrieben zu
[mm] $$\integral_{||\nu||=1}{\bruch{\partial u}{\partial \rho} (x+\rho \nu)\rho^{m-1}dS}$$
[/mm]
Der Beweis befindet sich im Buch Partial Differential Equations von Phoolan Prasad und Renuka Ravindran, zweite Auflage und beweist Theorem 2.4
Also mir ist klar, dass wir den Ball mit [mm] $\rho$ [/mm] -Radius in die Integration ziehen [mm] ($x+\rho \nu [/mm] $ ist ja der Ball um x mit Radius [mm] $\rho$) [/mm] daher integriert man im zweiten Integral nur noch über die Einheitssphäre das [mm] $\rho^{m-1}$ [/mm] scheint ein Skalierungsfaktor zu sein. Ich dachte zuerst, dass das über die Transformationsformel ins Spiel kommt, jedoch finde ich keinen Ansatz damit das passt. Warum sich der Ausdruck [mm] $\bruch{\partial}{\partial \nu}$ [/mm] zu [mm] $\bruch{\partial}{\partial \n\rho}$ [/mm] ändert bzw. das gleiche sein soll ist mir komplett schleierhaft.
Es wäre nett wenn mir jemand die Änderung der partiellen Ableitung und die Herkunft von [mm] $\rho^{m-1}$ [/mm] erklären könnte.
MfG
Hias
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 So 17.01.2016 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|