matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenIntegralskalierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Integralskalierung
Integralskalierung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralskalierung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:37 Do 14.01.2016
Autor: Hias

Hallo,
ich versuche gerade einen Beweis nachzuvollziehen.
Darin betrachtet man das Integral in m Dimensionen
[mm] $$\integral_{|x-y|=\rho} {\bruch{\partial u}{\partial \nu} dS}$$ [/mm]
Dieses Integral wird im nächsten Schritt umgeschrieben zu
[mm] $$\integral_{||\nu||=1}{\bruch{\partial u}{\partial \rho} (x+\rho \nu)\rho^{m-1}dS}$$ [/mm]
Der Beweis befindet sich im Buch Partial Differential Equations von Phoolan Prasad und Renuka Ravindran, zweite Auflage und beweist Theorem 2.4

Also mir ist klar, dass wir den Ball mit [mm] $\rho$ [/mm] -Radius in die Integration ziehen [mm] ($x+\rho \nu [/mm] $ ist ja der Ball um x mit Radius [mm] $\rho$) [/mm] daher integriert man im zweiten Integral nur noch über die Einheitssphäre das [mm] $\rho^{m-1}$ [/mm] scheint ein Skalierungsfaktor zu sein. Ich dachte zuerst, dass das über die Transformationsformel ins Spiel kommt, jedoch finde ich keinen Ansatz damit das passt. Warum sich der Ausdruck [mm] $\bruch{\partial}{\partial \nu}$ [/mm] zu [mm] $\bruch{\partial}{\partial \n\rho}$ [/mm] ändert bzw. das gleiche sein soll ist mir komplett schleierhaft.
Es wäre nett wenn mir jemand die Änderung der partiellen Ableitung und die Herkunft von [mm] $\rho^{m-1}$ [/mm] erklären könnte.
MfG
Hias

        
Bezug
Integralskalierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 So 17.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]