matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntegralsatz von Stokes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Integralsatz von Stokes
Integralsatz von Stokes < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsatz von Stokes: Parametrisierung des Randes
Status: (Frage) beantwortet Status 
Datum: 15:12 Mi 25.02.2009
Autor: Marcel08

Aufgabe
Sei [mm] \Omega=[(x,y)\in\IR^{2}:0\le x\le3,0\ley\le y\le e^{x}] [/mm] und [mm] f:\IR^{2}\to\IR^{2},f(x,y)=(xy,e^{x})^{T}. [/mm] Skizzieren Sie [mm] \Omega [/mm] und berechnen Sie [mm] \integral_{\partial\Omega}^{}{f*ds} [/mm] als Wegintegral und mit Hilfe des Satzes von Stokes.

Liebe Matheraum-Community,


bei der Berechnung des Wegintegrals habe ich bezüglich der Parametrisierung des Randes so meine Schwierigkeiten. Wie geht man dabei genau vor?


Ich weiß zumindest, dass mir dir Summe der einzelnen Wege


[mm] \integral_{\partial\Omega}^{}{f*ds}=\summe_{i=1}^{n}dt [/mm]



bei der Berechnung des gesuchten Integrals weiterhelfen wird.




Meine Fragen:


1.) Wie viele Wege gibt es und woher weiss man das?

2.) Wie ermittle ich die einzelnen Wege?


Über einige Tipps würde ich mich sehr freuen





Gruß, Marcel

        
Bezug
Integralsatz von Stokes: Zeichnen !
Status: (Antwort) fertig Status 
Datum: 16:37 Mi 25.02.2009
Autor: Al-Chwarizmi


> Sei [mm]\Omega=[(x,y)\in\IR^{2}:0\le x\le3,0\ley\le y\le e^{x}][/mm]
> und [mm]f:\IR^{2}\to\IR^{2},f(x,y)=(xy,e^{x})^{T}.[/mm] Skizzieren
> Sie [mm]\Omega[/mm] und berechnen Sie
> [mm]\integral_{\partial\Omega}^{}{f*ds}[/mm] als Wegintegral und mit
> Hilfe des Satzes von Stokes.

>  Liebe Matheraum-Community,
>  
> bei der Berechnung des Wegintegrals habe ich bezüglich der
> Parametrisierung des Randes so meine Schwierigkeiten. Wie
> geht man dabei genau vor?
>  
> Ich weiß zumindest, dass mir die Summe der einzelnen Wege
>  
> [mm]\integral_{\partial\Omega}^{}{f*ds}=\summe_{i=1}^{n}dt[/mm]
>    
> bei der Berechnung des gesuchten Integrals weiterhelfen
> wird.
>  
>  
> Meine Fragen:
>  
> 1.) Wie viele Wege gibt es und woher weiss man das?

Das muss man nicht wissen, aber man kann es sich
klar machen. Erstelle zuerst einmal die Zeichnung.
Dort solltest du sehen, welches die einzelnen Weg-
stücke sind, die zusammen den Rand von [mm] \Omega [/mm] bilden.
Bestimme dann zunächst einmal die Koordinaten
der Eckpunkte, die sich ergeben.
  

> 2.) Wie ermittle ich die einzelnen Wege?

Wenn du dir die Zeichnung anschaust, sollte dies
auch kaum ein Problem sein. Beachte dabei, dass
du das Gebiet [mm] \Omega [/mm] im Gegenuhrzeigersinn
umrundest.


LG     Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]