matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralsatz von Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integralsatz von Gauß
Integralsatz von Gauß < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsatz von Gauß: Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 20:04 So 20.10.2013
Autor: medphys

Aufgabe
Sei [mm] H={(x,y)|x^2+y^2\le 4, 0\le y} [/mm] und [mm] \vec{v} [/mm] das Vektorfeld [mm] \vec{v}=\vektor{2xy \\ x^2+y^2}. [/mm] Berechnen Sie [mm] \int_{H}^{} [/mm] div [mm] \vec{v}d(x,y) [/mm] sowohl direkt wie auch mit einem geeigneten Integralsatz.

Hallo zusammen,
ich finde bei der Rechnung einfach meinen Fehler nicht.
Zunächst erstmal die direkte Berechnung:
[mm] H'={(r,\varphi|0
[mm] x=r*cos(\varphi) [/mm] ; [mm] y=r*sin(\varphi) [/mm]

[mm] \int_{H}^{} [/mm] div [mm] \vec{v}d(x,y)= \int_{H}^{} [/mm] 4y d(x,y)
[mm] =\int_{H'}^{} 4r^2sin(\varphi)d(r,\varphi) [/mm]

[mm] =\int_{0}^{2}\int_{0}^{\pi}4r^2*sin(\varphi)d\varphi [/mm] dr= [mm] \int_{0}^{2}8r^2dr=\frac{64}{3}. [/mm]

Ich habe dann zur weiteren Berechnung den Integralsatz von Gauß verwendet und leider ein anderes Ergebnis rausbekommen.

[mm] \int_{M}^{} [/mm] div [mm] \vec{v} d(x,y)=\int_{\partialM}^{} \vec{v}\cdot\vec{n}ds [/mm]

[mm] \vec{n}=\frac{1}{2}\vektor{x \\ y} [/mm] die Kurve habe ich dann so parametrisiert [mm] \vec{c(t)}=2\cdot \vektor{cos(t) \\ sin(t)} [/mm] und damit [mm] |\vec{c_t(t)}|=2 [/mm] mit [mm] 0
[mm] \int_{\partial M}^{}[x^2y+\frac{1}{2}y(x^2+y^2)]d(x,y)= 2*\int_{0}^{\pi}[8cos^2(t)*sin(t)+4sin(t)]dt=8*\left[-\frac{2}{3}cos^3(t)-cos(t)\right]_{0}^{\pi}=8*\left[\frac{2}{3}+1-(-\frac{2}{3}-1)\right]=\frac{80}{3} [/mm]

Hoffe ihr könnt meinen Fehler finden.

Gruß
medphys

        
Bezug
Integralsatz von Gauß: Rand vervollständigen !
Status: (Antwort) fertig Status 
Datum: 20:26 So 20.10.2013
Autor: Al-Chwarizmi


> Sei [mm]H={(x,y)|x^2+y^2\le 4, 0\le y}[/mm] und [mm]\vec{v}[/mm] das
> Vektorfeld [mm]\vec{v}=\vektor{2xy \\ x^2+y^2}.[/mm] Berechnen Sie
> [mm]\int_{H}^{}[/mm] div [mm]\vec{v}d(x,y)[/mm] sowohl direkt wie auch mit
> einem geeigneten Integralsatz.
>  Hallo zusammen,
>  ich finde bei der Rechnung einfach meinen Fehler nicht.
>  Zunächst erstmal die direkte Berechnung:
>  [mm]H'={(r,\varphi|0
>  
> [mm]x=r*cos(\varphi)[/mm] ; [mm]y=r*sin(\varphi)[/mm]
>  
> [mm]\int_{H}^{}[/mm] div [mm]\vec{v}d(x,y)= \int_{H}^{}[/mm] 4y d(x,y)
>  [mm]=\int_{H'}^{} 4r^2sin(\varphi)d(r,\varphi)[/mm]
>  
> [mm]=\int_{0}^{2}\int_{0}^{\pi}4r^2*sin(\varphi)d\varphi[/mm] dr=
> [mm]\int_{0}^{2}8r^2dr=\frac{64}{3}.[/mm]
>  
> Ich habe dann zur weiteren Berechnung den Integralsatz von
> Gauß verwendet und leider ein anderes Ergebnis
> rausbekommen.
>  
> [mm]\int_{M}^{}[/mm] div [mm]\vec{v} d(x,y)=\int_{\partialM}^{} \vec{v}\cdot\vec{n}ds[/mm]
>  
> [mm]\vec{n}=\frac{1}{2}\vektor{x \\ y}[/mm] die Kurve habe ich dann
> so parametrisiert [mm]\vec{c(t)}=2\cdot \vektor{cos(t) \\ sin(t)}[/mm]
> und damit [mm]|\vec{c_t(t)}|=2[/mm] mit [mm]0
>
> [mm]\int_{\partial M}^{}[x^2y+\frac{1}{2}y(x^2+y^2)]d(x,y)= 2*\int_{0}^{\pi}[8cos^2(t)*sin(t)+4sin(t)]dt=8*\left[-\frac{2}{3}cos^3(t)-cos(t)\right]_{0}^{\pi}=8*\left[\frac{2}{3}+1-(-\frac{2}{3}-1)\right]=\frac{80}{3}[/mm]
>  
> Hoffe ihr könnt meinen Fehler finden.
>  
> Gruß
>  medphys


Hallo medphys,

(steht dies für "Medizin + Physik" ?  - interessante Kombination !)

ich habe jetzt gar nicht groß zu rechnen angefangen.
Aber ich sehe, dass du offenbar nur einen Teil der
Randkurve von H (den Halbkreisbogen) berücksichtigt
hast, aber nicht den Rest (den auf der x-Achse liegenden
Kreisurchmesser) !

Habe jetzt diesen Teil doch gerade noch berechnet,
und der daraus resultierende Beitrag scheint exakt
die Lücke zwischen deinen Ergebnissen zu füllen !

LG ,   Al-Chwarizmi


Bezug
                
Bezug
Integralsatz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 So 20.10.2013
Autor: medphys

Danke für die schnelle Antwort!
Genau dafür soll das medphys stehen.
Habe mal probiert die Strecke von -2 bis 2 zu parametrisieren, dabei kam raus:
[mm] \vec{c_2(t)}=\vektor{-2 \\ 0}+t \vektor{4 \\ 0} [/mm] mit 0<t<1.
Wenn ich das einsetze kommt dabei 0 raus, weil in jedem Produkt ein Faktor y auftaucht, der durch diese Parametrisierung immer 0 ist. Wo liegt diesmal der Fehler?
Gruß

Bezug
                        
Bezug
Integralsatz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 20.10.2013
Autor: Al-Chwarizmi


> Danke für die schnelle Antwort!
>  Genau dafür soll das medphys stehen.
>  Habe mal probiert die Strecke von -2 bis 2 zu
> parametrisieren, dabei kam raus:
>  [mm]\vec{c_2(t)}=\vektor{-2 \\ 0}+t \vektor{4 \\ 0}[/mm] mit
> 0<t<1.
>  Wenn ich das einsetze kommt dabei 0 raus, weil in jedem
> Produkt ein Faktor y auftaucht, der durch diese
> Parametrisierung immer 0 ist. Wo liegt diesmal der Fehler?
>  Gruß



Hallo medphys,

ich habe mir das entsprechende Integral so notiert:

    [mm] $\integral_{x=-2}^{+2}\,\vec{v}*\vec{n}\ [/mm] dx\ =\ [mm] \integral_{x=-2}^{+2}\,\pmat{2*x*y\\x^2+y^2}*\pmat{0\\-1}\ [/mm] dx$

      mit y=0 :

    $\ =\ [mm] \integral_{x=-2}^{+2}\,\pmat{0\\x^2}*\pmat{0\\-1}\ [/mm] dx\ =\ [mm] \integral_{x=-2}^{+2}\,(-\,x^2)\ [/mm] dx$

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]