matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntegralsatz von Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Integralsatz von Gauß
Integralsatz von Gauß < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsatz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 So 23.11.2008
Autor: Jojo987

Aufgabe
Gegeben sei im [mm] \IR^{3} [/mm] das Vektorfeld

[mm] v=\vektor{x^{2} \\ y^{2} \\ z} [/mm]

Es sei W der Rand des Würfels defniert durch die Eckpunkte (0;0;0), (1;0;0), (0;1;0) und (0;0;1). Bestimmen Sie [mm] \integral\integral_{W}{v dO}. [/mm]

Hallo,

Das ist das erste mal das ich mich an den Gaußschen Integralatz wage. Man kann diese Aufgabe sicher auch direkt lösen, da ich aber in Sachen Gaußscher Integralsatz fit werden möchte will ich das mal durch Gauß probieren. Es kann sein dass ich Grundlegende Verständnisprobleme bei diesem Thema habe, also macht mich bitte darauf aufmerksam wenn ihr das gefühl habt ich weiß nicht was ich da mache.

Ok dann wollen wir das mal probieren.

Der Integralsatz von Gauß verbindet Oberflächen- mit Volumensintegralen folgendermaßen:

[mm] \integral\integral_{F}{v dO}=\integral\integral\integral_{D}{div(v) dxdydz}. [/mm]

also ich hätte nun einfach nach dieser Formel ausgerechnet:

div(v)=2x+2y+1

und die Grenzen für das Volumensintegrals eines Würfels nach angabe gehen jeweils von 0 nach 1, also habe ich:

[mm] \integral_{0}^{1}\integral_{0}^{1}\integral_{0}^{1}{2x+2y+1 dxdydz} [/mm]

aber irgendwie kommt mir das zu simpel vor. stimt das so, oder was verstehe ic an dem Gaußschen Integralsatz falsch?

wenn ich jetzt weiterrechne ergibt sich:

[mm] \integral_{0}^{1}\integral_{0}^{1}\integral_{0}^{1}{2x+2y+1 dxdydz}= [/mm]
[mm] =\integral_{0}^{1}\integral_{0}^{1}{2x+2y+1 dxdy}= [/mm]
[mm] =\integral_{0}^{1}{2x+2 dx}=\underline{3} [/mm]

ist das meine Lösung oder stimmt was nicht.

Vielen dank für jede hilfreich antwort.
lg Johannes





        
Bezug
Integralsatz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 So 23.11.2008
Autor: XPatrickX

Guten Abend,
ich habe keinen Fehler gefunden!
Gruß Patrick

Bezug
                
Bezug
Integralsatz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Mo 24.11.2008
Autor: Jojo987

Guten Abend zusammen.
Ich hab mir das ganze mit der Aufgabe nochmal durch den Kopf gehen lassen.
Wenn das jetzt so richtig ist das das ergebnis = 3 ist bedeutet das doch dann dass die Oberfläche des Würfels 3 ist oder? Ich nehme das jetzt aus der linke Seite des Gaußschen Satzes da das ja die Oberfläche ist.

müsste dann nicht das Berechnen des Volumenintegrals zu dem Ergebnis 6 führen (Wegen Oberfläche vom Einheitswürfel = 6) ?

Bedanke mich für jede schlaue antwort :)

Gruß Johannes

Bezug
                        
Bezug
Integralsatz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Di 25.11.2008
Autor: fred97


> Guten Abend zusammen.
>  Ich hab mir das ganze mit der Aufgabe nochmal durch den
> Kopf gehen lassen.
>  Wenn das jetzt so richtig ist das das ergebnis = 3 ist
> bedeutet das doch dann dass die Oberfläche des Würfels 3
> ist oder? Ich nehme das jetzt aus der linke Seite des
> Gaußschen Satzes da das ja die Oberfläche ist.

Wieso das denn ???

FRED


>  
> müsste dann nicht das Berechnen des Volumenintegrals zu dem
> Ergebnis 6 führen (Wegen Oberfläche vom Einheitswürfel = 6)
> ?
>  
> Bedanke mich für jede schlaue antwort :)
>  
> Gruß Johannes


Bezug
        
Bezug
Integralsatz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 So 23.11.2008
Autor: tobe

Hallo,

kann mir jemand erklären wie man genau auf die Integrationsgrenzen kommt? Ich hätte es intuitiv genau so gemacht,  warum jedoch, bin ich mir nicht sicher.

Kann man da sagen dass  der Würfel halt einfach die Ausdehnung 1 in x-y und z Richtung hat und ich deswegen jeweils immer von 0 bis 1 Integriere?

Dann noch eine Frage zu dem Dreifachintegral. Kann man das einfach so easy nacheinander integrieren?
Müsste man das dann aber nicht auch von innen nach aussen her machen oder ist das egal?

Ich meine also:
[mm] $\integral_{0}^{1}\integral_{0}^{1}\integral_{0}^{1}{2x+2y+1dxdydz}$ [/mm]
$ [mm] =\integral_{0}^{1}\integral_{0}^{1}{2+2y+ dydz}= [/mm] $
$ [mm] =\integral_{0}^{1}{3 dz}=\underline{3} [/mm] $

Wenn ich mir das auch so noch einmal überlege, suchen wir ja eigentlich die Oberfläche eines Würfels mit der Kantenlänge 1 oder?
Ein Würfel hat ja eigentlich 6 Seiten und hier hätte jede Seite die Fläche 1 also müsste ja eigentlich 6 raus kommen?

Wo ist mein/unser Denkfehler?

Sorry für meine Unwissenheit :)

Liebe Grüße
Tobias

Bezug
                
Bezug
Integralsatz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Di 25.11.2008
Autor: fred97


> Hallo,
>  
> kann mir jemand erklären wie man genau auf die
> Integrationsgrenzen kommt? Ich hätte es intuitiv genau so
> gemacht,  warum jedoch, bin ich mir nicht sicher.
>  
> Kann man da sagen dass  der Würfel halt einfach die
> Ausdehnung 1 in x-y und z Richtung hat und ich deswegen
> jeweils immer von 0 bis 1 Integriere?
>  
> Dann noch eine Frage zu dem Dreifachintegral. Kann man das
> einfach so easy nacheinander integrieren?

Ja


> Müsste man das dann aber nicht auch von innen nach aussen
> her machen oder ist das egal?


Ja, auf die reihenfolge der Integrationen kommt es nicht an (satz von Fubini)

>
> Ich meine also:
>  
> [mm]\integral_{0}^{1}\integral_{0}^{1}\integral_{0}^{1}{2x+2y+1dxdydz}[/mm]
>  [mm]=\integral_{0}^{1}\integral_{0}^{1}{2+2y+ dydz}=[/mm]
>  
> [mm]=\integral_{0}^{1}{3 dz}=\underline{3}[/mm]
>  
> Wenn ich mir das auch so noch einmal überlege, suchen wir
> ja eigentlich die Oberfläche eines Würfels mit der
> Kantenlänge 1 oder?

Das suchen wir nicht. Wie kommst Du darauf ?


FRED



> Ein Würfel hat ja eigentlich 6 Seiten und hier hätte jede
> Seite die Fläche 1 also müsste ja eigentlich 6 raus
> kommen?
>  
> Wo ist mein/unser Denkfehler?
>  
> Sorry für meine Unwissenheit :)
>  
> Liebe Grüße
>  Tobias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]