matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIntegralsatz => Integralformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Integralsatz => Integralformel
Integralsatz => Integralformel < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsatz => Integralformel: Beweis überprüfen...
Status: (Frage) beantwortet Status 
Datum: 09:50 Fr 07.03.2008
Autor: linder05

Aufgabe
Gelte in [mm] $\mathcal{G}$ [/mm] der Cauchysche Integralsatz. Dann gilt in [mm] $\mathcal{G}$ [/mm] auch die Cauchysche Integralformel; d.h.:
Ist [mm] $\gamma:[\alpha,\beta]\rightarrow \mathcal{G}$ [/mm] stückweise stetig
differenzierbare geschlossene Kurve, so gilt
[mm] \begin{displaymath} \forall f \in \mathcal{O(G)}\ \forall z \in \mathcal{G}\setminus T_{\gamma}:\ \frac{1}{2\pi i} \int_{\gamma}\frac{f(\zeta)}{\zeta - z}d\zeta=w(\gamma,z)f(z) \end{displaymath} [/mm]

Vielleicht kann jemand mal meinen Beweis auf Fehler überprüfen? Der soll nämlich in meine Abschlussarbeit... Besten Dank!!

Sei $f [mm] \in \mathcal{O(G)}$ [/mm] und [mm] $\gamma:[\alpha,\beta]\rightarrow \mathcal{G}$ [/mm] eine stückweise stetig differenzierbare geschlossene Kurve eine geschlossene Kurve in [mm] $\mathcal{G}$. [/mm] Ferner gelte in [mm] $\mathcal{G}$ [/mm] der Cauchysche Integralsatz. Wir definieren bei festem $z [mm] \in \mathcal{G}\setminus T_{\gamma}$ [/mm] die in [mm] $\mathcal{G}\setminus\{z\}$ [/mm] holomorphe und in [mm] $\mathcal{G}$ [/mm] stetige Funktion
[mm] \begin{displaymath} \varphi_{f;z}: \mathcal{G} \rightarrow \mathbb C,\ \zeta \mapsto \left\{\begin{array}{cl} \frac{f(\zeta)-f(z))}{\zeta-z}, & \zeta \in \mathcal{G}\setminus\{z\}\\ f'(z), & \zeta=z \end{array} \right. \end{displaymath} [/mm]
Falls [mm] $\varphi_{f;z}\in \mathcal{O(\mathcal{G})}$ [/mm] ist, können wir den Integralsatz auf [mm] $\varphi_{f;z}$ [/mm] anwenden. Problematisch ist, dass [mm] $\varphi_{f;z}$ [/mm] zunächst nur in [mm] $\mathcal{G}\setminus\{z\}$ [/mm] holomorph ist. Nach dem Riemannschen Fortsetzungssatz ist [mm] $\varphi_{f;z}$ [/mm] holomorph in ganz [mm] $\mathcal{G}$, [/mm] wenn [mm] $\varphi_{f;z}$ [/mm] in einer punktierten Umgebung [mm] $\dot{U}:=U(z)\setminus \{z\} \subset \mathcal{G}$ [/mm] von $z$ beschränkt ist. Dies ist genau dann der Fall, wenn [mm] $\lim\limits_{\substack{\zeta\rightarrow z\\ \zeta\neq z}}(\zeta-z)\varphi_{f;z}=0$ [/mm] ist. [mm] \\ [/mm]
Es gilt:
[mm] \begin{displaymath} \lim\limits_{\substack{\zeta\rightarrow z\\ \zeta\neq z}}(\zeta-z)\varphi_{f;z}=\lim\limits_{\substack{\zeta\rightarrow z\\ \zeta\neq z}}(\zeta-z)\frac{f(\zeta)-f(z)}{\zeta-z}=\lim\limits_{\substack{\zeta\rightarrow z\\ \zeta\neq z}}(f(\zeta)-f(z))=0 \end{displaymath} [/mm]
[mm] $\varphi_{f;z}$ [/mm] ist also auf ganz [mm] $\mathcal{G}$ [/mm] holomorph fortsetzbar, d.h. [mm] $\varphi_{f;z}\in \mathcal{O(\mathcal{G})}$. [/mm] Insgesamt folgt damit nach dem Cauchyschen Integralsatz [mm] $\int_{\gamma}\varphi_{f;z}(\zeta)d\zeta=0$. [/mm]

Also gilt:
[mm] \begin{displaymath} 0=\int_{\gamma}\varphi_{f;z}(\zeta)d\zeta=\int_{\gamma}\frac{f(\zeta)}{\zeta-z}d\zeta-f(z)\int_{\gamma}\frac{1}{\zeta-z}d\zeta \end{displaymath} [/mm]
Mit
[mm] \begin{displaymath} w(\gamma,z)=\frac{1}{2\pi i}\int_{\gamma}\frac{1}{\zeta-z}d\zeta \end{displaymath} [/mm]
folgt schließlich
[mm] \begin{displaymath} \frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}d\zeta=\frac{f(z)}{2\pi i}\int_{\gamma}\frac{1}{\zeta-z}d\zeta=w(\gamma,z)f(z) \end{displaymath} [/mm]

        
Bezug
Integralsatz => Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 So 09.03.2008
Autor: felixf

Hallo!

> Gelte in [mm]\mathcal{G}[/mm] der Cauchysche Integralsatz. Dann gilt
> in [mm]\mathcal{G}[/mm] auch die Cauchysche Integralformel; d.h.:
>  Ist [mm]\gamma:[\alpha,\beta]\rightarrow \mathcal{G}[/mm]
> stückweise stetig
>  differenzierbare geschlossene Kurve, so gilt
>  [mm]\begin{displaymath} \forall f \in \mathcal{O(G)}\ \forall z \in \mathcal{G}\setminus T_{\gamma}:\ \frac{1}{2\pi i} \int_{\gamma}\frac{f(\zeta)}{\zeta - z}d\zeta=w(\gamma,z)f(z) \end{displaymath}[/mm]
>  
> Vielleicht kann jemand mal meinen Beweis auf Fehler
> überprüfen? Der soll nämlich in meine Abschlussarbeit...
> Besten Dank!!
>  
> Sei [mm]f \in \mathcal{O(G)}[/mm] und
> [mm]\gamma:[\alpha,\beta]\rightarrow \mathcal{G}[/mm] eine
> stückweise stetig differenzierbare geschlossene Kurve eine
> geschlossene Kurve in [mm]\mathcal{G}[/mm]. Ferner gelte in
> [mm]\mathcal{G}[/mm] der Cauchysche Integralsatz. Wir definieren bei
> festem [mm]z \in \mathcal{G}\setminus T_{\gamma}[/mm] die in
> [mm]\mathcal{G}\setminus\{z\}[/mm] holomorphe und in [mm]\mathcal{G}[/mm]
> stetige Funktion
> [mm]\begin{displaymath} \varphi_{f;z}: \mathcal{G} \rightarrow \mathbb C,\ \zeta \mapsto \left\{\begin{array}{cl} \frac{f(\zeta)-f(z))}{\zeta-z}, & \zeta \in \mathcal{G}\setminus\{z\}\\ f'(z), & \zeta=z \end{array} \right. \end{displaymath}[/mm]
>  
> Falls [mm]\varphi_{f;z}\in \mathcal{O(\mathcal{G})}[/mm] ist, können
> wir den Integralsatz auf [mm]\varphi_{f;z}[/mm] anwenden.
> Problematisch ist, dass [mm]\varphi_{f;z}[/mm] zunächst nur in
> [mm]\mathcal{G}\setminus\{z\}[/mm] holomorph ist. Nach dem
> Riemannschen Fortsetzungssatz ist [mm]\varphi_{f;z}[/mm] holomorph

Hier sehe ich ein eventuelles Problem: fuer den Riemannschen Fortsetzungssatz (genauer: nach dem Beweis den ich kenne) muss man wissen, dass holomorphe Funktionen eine Potenzreihenentwicklung besitzen in jedem Punkt. Um das zu beweisen, benoetigt man jedoch die Cauchysche Integralformel, zumindest fuer konvexe Gebiete oder zumindest fuer Kreise.

Insofern ist fraglich, ob du ihn hier so anwenden kannst. Davon abgesehen ist alles ok.

Normalerweise umgeht man dieses Problem, indem man den Cauchyschen Integralsatz nicht nur fuer holomorphe Funktionen, sondern fuer Funktionen, die holomorph sind bis auf in endlich vielen Punkten (oder auch nur einem Punkt), wo sie aber stetig ist. Dann kann man den Satz direkt auf die Hilfsfunktion [mm] $\varphi_{f;z}$ [/mm] anwenden, ohne den Riemannschen Hebbarkeitssatz zu bequemen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]