matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung zwischen zwei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integralrechnung zwischen zwei
Integralrechnung zwischen zwei < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung zwischen zwei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Sa 05.01.2013
Autor: tabx

Aufgabe
Wie groß ist die Fläche, die von den Graphen von f und g begrenzt wird?

a) f(x)=x², g(x)=-x²+4x
b) f(x)=-1/x², g(x)=2,5x-5,25

Hey, die Aufgaben sind ziemlich wichtig und ich hab leider keeeine Ahnung, wie das funktioniert... war das irgendwas mit Gleichsetzen? Hüüülfe, bitte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung zwischen zwei: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Sa 05.01.2013
Autor: M.Rex

Hallo und [willkommenmr]

> Wie groß ist die Fläche, die von den Graphen von f und g
> begrenzt wird?
>  
> a) f(x)=x², g(x)=-x²+4x
>  b) f(x)=-1/x², g(x)=2,5x-5,25
>  Hey, die Aufgaben sind ziemlich wichtig und ich hab leider
> keeeine Ahnung, wie das funktioniert... war das irgendwas
> mit Gleichsetzen? Hüüülfe, bitte

In der Tat solltest du die Funkionen erstmal gleichsetzen, um die Schnittstellen (die x-Koordinaten dre Schnittpunkte) zu bestimmen.
Nennen wir diese nun mal [mm] x_{1} [/mm] und [mm] x_{2} [/mm] (Hier gibt es bei allen beiden Aufgaben dankenswerterweise genau zwei Schnittstellen)
Diese werden nachher die Integrationsgrenzen.

Für die zu berechnende Fläche integriere dann die Differenz der beteiligten Funktionen, setze diese, um sicher eine positiven Wert zu haben, nich in Betragsstriche.

Für die Fläche zwischen den Funktionsgraphen gilt dann:

[mm] A=\left|\int\limits_{x_{1}}^{x_{2}}f(x)-g(x)dx\right| [/mm]

Also in Aufgabe a)

[mm] A=\left|\int\limits_{x_{1}}^{x_{2}}x^{2}-(-x^{2}+4x)dx\right|=\ldots [/mm]

Nun bist du erstmal wieder dran, diese Tipps in die konkrete Rechnung zu verarbeiten.

Marius


Bezug
                
Bezug
Integralrechnung zwischen zwei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 So 06.01.2013
Autor: tabx

Bei der ersten hab ich's verstanden, aber das mit dem Gleichsetzen bekomm ich bei der zweiten leider nicht hin...

Bezug
                        
Bezug
Integralrechnung zwischen zwei: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 So 06.01.2013
Autor: reverend

Hallo tabx,

> Bei der ersten hab ich's verstanden, aber das mit dem
> Gleichsetzen bekomm ich bei der zweiten leider nicht hin...

Das ist zugegebenermaßen auch schwierig, immerhin hast Du eine Gleichung dritter Ordnung zu lösen. Da muss man normalerweise erst einmal eine Lösung "erraten".

Gesucht ist [mm] -\bruch{1}{x^2}=2,5x-5,25\;\;\gdw\;\;\bruch{1}{x^2}+\bruch{5}{2}x-\bruch{21}{4}=0\;\;\gdw\;\;4+10x^3-21x^2=0 [/mm]

Für den letzten Schritt habe ich die ganze Gleichung mit [mm] 4x^2 [/mm] multipliziert. x=0 muss man dafür ausschließen, aber das ist ja offenbar sowieso keine Lösung. Nun ordnen wir mal ein bisschen um und "probieren" ein bisschen herum.

[mm] 10x^3-21x^2+4=0 [/mm] ist zu lösen; anders gesagt: die Nullstellen von [mm] h(x)=10x^3-21x^2+4 [/mm] sind gesucht. Nun ist $h(x)$ eine auf ganz [mm] \IR [/mm] stetige Funktion, und h(0)=4 sowie h(1)=-7. Nach dem Zwischenwertsatz gibt es also in [0;1] mindestens eine Nullstelle.

Der Aufgabensteller nimmt an, dass Du in der Lage bist, so eine Nullstelle zu finden. Sie wird also sehr "einfach" sein, also z.B. [mm] x=\tfrac{1}{2} [/mm] oder [mm] x=\tfrac{1}{3} [/mm] oder [mm] x=\tfrac{2}{3}. [/mm]

Die würde ich mal ausprobieren. ;-)

Wenn Du eine Nullstelle hast, kannst Du ja durch Polynomdivision das Polynom dritten Grades auf ein quadratisches reduzieren und dann mit den bewährten Methoden (p-q-Formel, Mitternachtsformel oder quadratische Ergänzung) die restlichen beiden Nullstellen bestimmen.

Grüße
reverend


Bezug
                                
Bezug
Integralrechnung zwischen zwei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Mo 07.01.2013
Autor: tabx

Super, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]