matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung Kettenlinie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integralrechnung Kettenlinie
Integralrechnung Kettenlinie < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung Kettenlinie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Sa 01.11.2014
Autor: LeneBrock

Hallo, ich muss mich zur Zeit mit der Kettenlinie beschäftigen und habe nun eine Frage an einem Punkt, bei dem es im Buch nicht genau erklärt wird.

Es steht dort, dass durch Substitution y'=z ein erstes Mal und nach Rücksubstitution ein zweites Mal integriert werden kann. So kommt man von [mm] \bruch{y''}{\wurzel{1+y'^{2}}} =\bruch{q}{F_{SH}} [/mm]
auf
[mm] y=\bruch{F_{SH}}{q}cosh(\bruch{q}{F_{SH}}x+C_{1})+C_{2} [/mm]

Es wäre sehr nett, wenn mir jemand diese Zwischenschritte aufschreiben könnte, da ich auch nach mehreren Versuchen nicht weitergekommen bin.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung Kettenlinie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 01.11.2014
Autor: chrisno

Ich lese das so:
Die Differentialgleichung lautet:
[mm]\bruch{y''}{\wurzel{1+y'^{2}}} =\bruch{q}{F_{SH}}[/mm]
und die Lösung lautet:

> [mm]y=\bruch{F_{SH}}{q}\cosh\left(\bruch{q}{F_{SH}}x+C_{1}\right)+C_{2}[/mm]

und die Substitution ist ein Hinweis um zu dieser Lösung zu gelangen.

Nun führe die Substitution durch und vergiss y'' nicht.

Bezug
                
Bezug
Integralrechnung Kettenlinie: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:38 Sa 01.11.2014
Autor: LeneBrock

Ja so habe ich das auch verstanden, nur weiß ich nicht wie man die beschriebenen Schritte macht.

Bezug
                        
Bezug
Integralrechnung Kettenlinie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Sa 01.11.2014
Autor: fred97

Du hast

$ [mm] \bruch{y''}{\wurzel{1+y'^{2}}} =\bruch{q}{F_{SH}} [/mm] $

Die rechte Seite kürze ich ab mit [mm] a:=\bruch{q}{F_{SH}} [/mm]

Mit z:=y' bekommst Du

   [mm] z'=a*\wurzel{1+z^{2}} [/mm]

Diese DGL löse nun mit Trennung der Veränderlichen

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]