matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung: Anwendung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integralrechnung: Anwendung
Integralrechnung: Anwendung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Do 02.07.2009
Autor: EB1023

Aufgabe
eine hooksche feder mit der Federkonstanten D=150 [mm] kg/s^2 [/mm] ist bereits um 10 cm gespannt gegenüber ihrem unbelasteten Zustand
Welche Abriet ist erfordelich, um die Feder um weitere 30cm zu verlängern ?  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bin Schüler des Technischen Gymnasiums und besuche die 12. KLasse, im Moment stehe ich in Mathe auf 13 Punkte. Aber Diese Aufgabe mit der Feder konnte ich bisher nur mit physikalischem Wissen lösen. aber nicht durch Anwedung des Integras. Vllt könnt ihr mir helfen

        
Bezug
Integralrechnung: Anwendung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Do 02.07.2009
Autor: EB1023

oder Stimmt das so ?

W = [mm] \integral_{0,1}^{0,4}{D*S ds}=\integral_{0,1}^{0,4}{150*S ds}=11.25 [/mm]

Bezug
        
Bezug
Integralrechnung: Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Do 02.07.2009
Autor: Al-Chwarizmi


> eine hooksche feder mit der Federkonstanten
> D=150 [mm]kg/s^2[/mm]
> ist bereits um 10 cm gespannt gegenüber ihrem
> unbelasteten Zustand.
> Welche Arbeit ist erforderlich, um die Feder um
> weitere 30cm zu verlängern ?

  

> Diese Aufgabe mit der Feder konnte ich bisher
> nur mit physikalischem Wissen lösen, aber nicht
> durch Anwedung des Integrals.

Die Anwendung des Integrals beruht natürlich
auch auf physikalisch-mathematischem Wissen.


>   $ [mm] \integral_{0,1}^{0,4}{D\cdot{}S ds}=\integral_{0,1}^{0,4}{150\cdot{}S ds}=11.25 [/mm] $


Hallo,

du verwendest in der Aufgabenstellung und der
Lösung den Buchstaben s für zwei Zwecke:
einerseits für die Masseinheit Sekunden in
der Formel für die Federkonstante und dann
im Differential ds. Die Auslenkungsstrecke
bezeichnest du dann aber mit einem grossen S.
Das ist inkonsequent und eher verwirrend.
Lassen wir das s für die Sekunden und nehmen
für die Streckung der Feder gegenüber ihrer
Ruhelänge x und folglich für das Differential dx.

Die Berechnung würde ich dann etwa so
notieren:

      $\ F(x)\ =\ D*x$      (***)    

( x=Auslenkung in [m], F(x)=Kraft in [N],
D=Federkonstante in [mm] [kg*s^{-2}] [/mm] )

      $\ W\ =\ [mm] \integral_{x_1}^{x_2}F(x)\,dx\ [/mm] =\ [mm] \integral_{0.1}^{0.4}(D*x)\,dx$ [/mm]

      $\ =\ D* [mm] \bruch{x^2}{2}\text{ \LARGE{|}}_{0.1}^{0.4}\ [/mm] =\ [mm] 150*\bruch{0.4^2-0.1^2}{2}\ [/mm] =\ 11.25$  (W in [J])

Deine Rechnung war also richtig.

LG   Al-Chw.



(***) Man könnte die Formel auch so
schreiben:

       $\ F(x)\ =\ [mm] -\,D*x$ [/mm]

Dabei wird die Richtung der Kraft berück-
sichtigt.

    



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]