matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Berechung des Volumens
Status: (Frage) beantwortet Status 
Datum: 11:45 So 13.12.2009
Autor: freak900

Aufgabe
y= x²

gesucht ist die Vx (Volumen um die X-Achse) in [-1,+1]

Also: x² ist eine Parabel, -1, +1 sind die x-werte,

für die Berechnung brauche ich die y-Werte, die sind: y1= 1, y2= 1

1. Frage: Brauche ich für die Berechnung wirklich die y-Werte?

Vx = [mm] \pi [/mm] * [mm] \integral_{1}^{1}{x^{4}dx} [/mm] passt das so?

2. Vx = [mm] 2*\pi \integral_{?}^{?}{x^{4}dx} [/mm] - Wieso "2*" ? und was gehören jetzt für Grenzen?

Danke!

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 So 13.12.2009
Autor: Tyskie84

Hallo,

> y= x²
>  
> gesucht ist die Vx (Volumen um die X-Achse) in [-1,+1]
>  
> Also: x² ist eine Parabel, -1, +1 sind die x-werte,
>  
> für die Berechnung brauche ich die y-Werte, die sind: y1=
> 1, y2= 1
>  
> 1. Frage: Brauche ich für die Berechnung wirklich die
> y-Werte?
>

Na du brauchst ja Grenzen wo die Funktion beschränkt ist.

> Vx = [mm]\pi[/mm] * [mm]\integral_{\red{-}1}^{1}{x^{4}dx}[/mm] passt das so?
>  

Ja das passt jetzt so. Beachte das eingefügte - bei der unteren Grenze. Jetzt integrieren und berechnen.

> 2. Vx = [mm]2*\pi \integral_{?}^{?}{x^{4}dx}[/mm] - Wieso "2*" ? und
> was gehören jetzt für Grenzen?

Was ist das jetzt?

>  Danke!


[hut] Gruß

Bezug
                
Bezug
Integralrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:17 So 13.12.2009
Autor: freak900


> Hallo,
>  
> > y= x²
>  >  
> > gesucht ist die Vx (Volumen um die X-Achse) in [-1,+1]
>  >  
> > Also: x² ist eine Parabel, -1, +1 sind die x-werte,
>  >  
> > für die Berechnung brauche ich die y-Werte, die sind: y1=
> > 1, y2= 1
>  >  
> > 1. Frage: Brauche ich für die Berechnung wirklich die
> > y-Werte?
>  >

>
> Na du brauchst ja Grenzen wo die Funktion beschränkt ist.
>  

Bei der Flächenberechung nimmt man als Grenzen die x-Werte, wie schaut das bei der Volumsberechnung aus? die Y-Werte? so wie im dem Beispiel oder?



> > Vx = [mm]\pi[/mm] * [mm]\integral_{\red{-}1}^{1}{x^{4}dx}[/mm] passt das so?
>  >  
>
> Ja das passt jetzt so. Beachte das eingefügte - bei der
> unteren Grenze. Jetzt integrieren und berechnen.
>  

achso das war es schon

> > 2. Vx = [mm]2*\pi \integral_{?}^{?}{x^{4}dx}[/mm] - Wieso "2*" ? und
> > was gehören jetzt für Grenzen?
>  
> Was ist das jetzt?

Frage: Ich habe gedacht, 2*, weil es ja von -1 bis 1 geht, also stell dir eine Parabel x² vor, mit den x-Werten "1" und -1", das ergibt ja dann 2 Flächen oder? Ich verstehs wahrscheinlich falsch.

>  
> >  Danke!

>
>
> [hut] Gruß


Liebe Grüße und Herzlichen Dank!

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 So 13.12.2009
Autor: Tyskie84

Hallo,

Ich dachte die -1 und 1 sind die x Werte. Du hast ja dieses Intervall angegeben. Und diese Grenzen sollst du nehmen. Die Parabel rotiert ja um die x Achse.

Vielleicht tippst du mal die genaue Aufgabenstellung hier ab. Weil ich bin momentan ein wenig verwirrt :-)

[hut] Gruß

Bezug
                                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 So 13.12.2009
Autor: freak900


> Hallo,
>  
> Ich dachte die -1 und 1 sind die x Werte. Du hast ja dieses
> Intervall angegeben. Und diese Grenzen sollst du nehmen.
> Die Parabel rotiert ja um die x Achse.
>
> Vielleicht tippst du mal die genaue Aufgabenstellung hier
> ab. Weil ich bin momentan ein wenig verwirrt :-)
>  
> [hut] Gruß

Hi!

Achso, stimmt du hast natürlich Recht, jetzt verstehe ich es erst, wenn dieses Volumen um die X-Achse kreist, braucht man nicht berücksichtigen das, das Volumen, wie in dem Beispiel auf der negativen Seite nochmal existiert, oder?




Bezug
                                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 So 13.12.2009
Autor: Tyskie84

Hallo,

> > Hallo,
>  >  
> > Ich dachte die -1 und 1 sind die x Werte. Du hast ja dieses
> > Intervall angegeben. Und diese Grenzen sollst du nehmen.
> > Die Parabel rotiert ja um die x Achse.
> >
> > Vielleicht tippst du mal die genaue Aufgabenstellung hier
> > ab. Weil ich bin momentan ein wenig verwirrt :-)
>  >  
> > [hut] Gruß
>
> Hi!
>  
> Achso, stimmt du hast natürlich Recht, jetzt verstehe ich
> es erst, wenn dieses Volumen um die X-Achse kreist, braucht
> man nicht berücksichtigen das, das Volumen, wie in dem
> Beispiel auf der negativen Seite nochmal existiert, oder?
>  
>
>  

Genau. Die Parabel rotiert ja um die x Achse und es entsteht ein Volumen welches berechnet werden soll. :-)

[hut] gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]