matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Integralkriterium
Status: (Frage) beantwortet Status 
Datum: 12:49 Mo 07.04.2008
Autor: babsbabs

Aufgabe
Untersuchen Sie mit Hilfe des Integralkriteriums, ob die Reihen konvergieren

[mm] \summe_{n \ge 0}^{n} n*e^-^n^2 [/mm]

die hochzahl ist - n hoch 2

Wenn ich den Ausdruck integriere komme ich auf

[mm] -\bruch{1}{2}e^-^n^2 [/mm] (wieder mit der hochzahl  - n hoch 2)

Die Definition des Integralkriteriums in meinem Buch: Sei f: [1, [mm] \infty) \mapsto \IR [/mm] eine nichtnegative und monoton fallende Funktion. Dann ist das uneigentliche Integral [mm] \integral_{1}^{\infty}{f(x) dx} [/mm] genau dann konvergent, wenn die Reihe [mm] \summe_{n=1}^{\infty} [/mm] f(n) konvergiert.

Weiß leider nicht wie ich das Integralkriterium konkret anwenden soll - welche Schritte muss ich machen - bitte um Hilfe

Danke

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Mo 07.04.2008
Autor: Marcel

Hallo,

> Untersuchen Sie mit Hilfe des Integralkriteriums, ob die
> Reihen konvergieren
>  
> [mm]\summe_{n \ge 0}^{n} n*e^-^n^2[/mm]

>

> die hochzahl ist - n hoch 2

Du meinst [mm] $\summe_{n \ge 0} n*e^{-n^2}$ [/mm] oder

[mm] $\summe_{n=0}^{\red{\infty}} n*e^{-n^2}$ [/mm]
  

> Wenn ich den Ausdruck integriere komme ich auf
>  
> [mm]-\bruch{1}{2}e^-^n^2[/mm] (wieder mit der hochzahl  - n hoch 2)
>  
> Die Definition des Integralkriteriums in meinem Buch: Sei
> f: [1, [mm]\infty) \mapsto \IR[/mm] eine nichtnegative und monoton
> fallende Funktion. Dann ist das uneigentliche Integral
> [mm]\integral_{1}^{\infty}{f(x) dx}[/mm] genau dann konvergent, wenn
> die Reihe [mm]\summe_{n=1}^{\infty}[/mm] f(n) konvergiert.
>
> Weiß leider nicht wie ich das Integralkriterium konkret
> anwenden soll - welche Schritte muss ich machen - bitte um
> Hilfe

also erstmal kümmern wir uns um die Grenzen bei der Reihe:

Weil für $n=0$ der Term [mm] $n*e^{-n^2}$ [/mm] einfach [mm] $=0*e^0=0*1=0$ [/mm] ist, können wir zunächst einfach schreiben

[mm] $\summe_{n \ge 0} n*e^{-n^2}=\summe_{n=0}^{\infty} n*e^{-n^2}=\summe_{n=1}^{\infty} n*e^{-n^2}$ [/mm]

Mit [mm] $f(x):=x*e^{-x^2}$ [/mm] ($x [mm] \ge [/mm] 1$) gilt dann offenbar, dass [mm] $f(n)=n*e^{-n^2}$ [/mm] ($n [mm] \in \IN$), [/mm] d.h.:

[mm] $\summe_{n \ge 0} n*e^{-n^2}=\summe_{n=1}^{\infty} n*e^{-n^2}$ [/mm] konvergiert nach Deinem Satz genau dann, wenn es

[mm] $\int_{1}^\infty x*e^{-x^2}dx$ [/mm] tut.

Um das letztstehende Integral auf Konvergenz zu überprüfen, substituierst Du entweder [mm] $y:=-x^2$, [/mm] oder aber Du machst Dir einfach klar, dass für

[mm] $f(x)=x*e^{-x^2}$ [/mm] auf [mm] $[1,\infty)$ [/mm] offensichtlich die Funktion $F$ mit

[mm] $F(x)=-\frac{1}{2}e^{-x^2}$ [/mm] eine Stammfunktion ist. Mit dem HDI folgt dann:

[mm] $\int_{1}^\infty f(x)dx=\lim_{R \to \infty} [/mm] F(R)-F(1)=...$

Jetzt kommt nur noch - mehr oder weniger - banales Einsetzen und ein Wissen über [mm] $\exp(.)$ [/mm] ins Spiel...

P.S.:
Du solltest natürlich noch anmerken bzw. beweisen, dass die Funktion $f: [mm] [1,\infty) \to \IR$ [/mm] mit [mm] $f(x):=x*e^{-x^2}$ [/mm] nichtnegativ ist (das ist ziemlich banal, weil auf [mm] $[1,\infty)$ [/mm] der Faktor $x$ nichtnegativ (sogar echt positiv) ist und [mm] $e^{-x^2}$ [/mm] eh echt positiv), und dass diese Funktion $f$ monoton fallend ist (das kann man z.B. mittels der Ableitung zeigen).

Gruß,
Marcel

Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 07.04.2008
Autor: babsbabs

hallo

danke für die antwort - stimmt überhaupt meine Stammfunktion (dh das ergebnis meines integrierens)?

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mo 07.04.2008
Autor: Marcel

Hallo,

jein. Ich meine, Du hast geschrieben, "Du integrierst" [mm] $n*e^{-n^2}$ [/mm] und erhälst [mm] $-\frac{1}{2}*e^{-n^2}$. [/mm] Wenn ich das wortwörtlich nehmen würde, dann würdest Du

$f: [mm] \IN \to \IR$ [/mm] mit [mm] $f(n):=n*e^{-n^2}$ [/mm]

integrieren. Das meinst Du aber sicher nicht so.

Was Du aber eigentlich meintest, ist, dass [mm] $\int x*e^{-x^2}dx=F$ [/mm] mit [mm] $F(x)=-\frac{1}{2}*e^{-x^2}$ [/mm] ist (wobei man meist etwas "lax" schreibt: [mm] $\int x*e^{-x^2}dx=-\frac{1}{2}e^{-x^2}$) [/mm] (und wenn ich Deine Aussage sinngemäß lese, dann interpretiere ich es mal zu Deinen Gunsten, dass Du eigentlich meintest, dass [mm] $\int n*e^{-n^2}dn=-\frac{1}{2}*e^{-n^2}$; [/mm] aber hier ist es natürlich "didaktisch" schlecht, als "Funktions-" bzw. Integrationsvariable $n$ zu wählen, weil man meist "automatisch" denkt, dass $n [mm] \in \IN$ [/mm] wäre).

Wie gesagt:
Formal sagst Du besser, dass für [mm] $f:[1,\infty) \to \IR$ [/mm] mit [mm] $f(x):=x*e^{-x^2}$ [/mm] gilt, dass mit [mm] $\int [/mm] f=F$ mit [mm] $F:[1,\infty) \to \IR$ [/mm] definiert durch [mm] $F(x)=-\frac{1}{2}*e^{-x^2}$ [/mm] eine Stammfunktion gegeben ist.

Und wie gesagt:
Wenn Du dies formal nachrechnen willst, dann hast Du zwei Möglichkeiten:
1.) In [mm] $\int x*e^{-x^2}dx$ [/mm] substituierst Du (z.B.) [mm] $y:=-x^2$ [/mm]

2.) Du leitest einfach [mm] $F(x)=-\frac{1}{2}*e^{-x^2}$ [/mm] nach der Kettenregel ab und zeigst damit, dass $F'(x)=f(x)$ für alle $x$ gilt

(Wenn Dir der Definitionsbereich [mm] $[1,\infty)$ [/mm] dafür "nicht schön" genug ist, dann betrachte einfach [mm] $f_1: \IR \to \IR$ [/mm] mit [mm] $f_1(x):=x*e^{-x^2}$ [/mm] und zeige, dass [mm] $F_1: \IR \to \IR$ [/mm] mit [mm] $F_1(x):=-\frac{1}{2}*x^2$ [/mm] dann eine Stammfunktion von [mm] $f_1$ [/mm] ist; dann kannst Du auch mit [mm] $f_1$ [/mm] und [mm] $F_1$ [/mm] arbeiten, was natürlich nichts ändert, aber ggf. "formal sinnvoller" sein kann je nach Formulierung gewisser Dir zugrundeliegenden Sätze.)

Also Fazit:
Ja, benutze, dass

[mm] $\int x*e^{-x^2}dx=F$ [/mm] mit [mm] $F(x)=-\frac{1}{2}*e^{-x^2}$ [/mm] gilt.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]