Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:20 Mi 09.01.2008 | Autor: | djathen |
Beim Senkrechten Wurd nach oben mit der Anfangsgeschwindigkeit v(0) = v0 gilt für die Geschwindigkeit eines Körpers nach t Sekunden v(t)= v0 - 9,81 * t ( v in [mm] \bruch{m}{s}).
[/mm]
a) Bestimmen Sie für v0=20 (in [mm] \bruch{m}{s}) [/mm] die Höhe, in der sich ein Körper nach 3 Sekunden befindet.
b) Ein anch oben geworfener Stein kommt nach 4s wieder an der ABwurfstelle an. Wie groß ist die Anfangsgeschwindigkeit nd welche Höhe erreicht der Stein?
Also ich komme damit überhaupt nicht klar... physikalisch kann ich das lösen mit formeln...aber wie zum teufel mache ich das mit Integralen?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Mi 09.01.2008 | Autor: | MischiT1 |
> Beim Senkrechten Wurd nach oben mit der
> Anfangsgeschwindigkeit v(0) = v0 gilt für die
> Geschwindigkeit eines Körpers nach t Sekunden v(t)= v0 -
> 9,81 * t ( v in [mm]\bruch{m}{s}).[/mm]
>
> a) Bestimmen Sie für v0=20 (in [mm]\bruch{m}{s})[/mm] die Höhe, in
> der sich ein Körper nach 3 Sekunden befindet.
Also so wie du die Aufgabenstellung hier geschrieben hast muss man die Funktion v(t) nur integrieren, um die Strecke x(t) zu erhalten. Dies sieht folgendermaßen aus:
[mm] \integral_{0}^{3}{v(t)\ dt} [/mm] = [mm] \integral_{0}^{3}{(v_0\ -\ 9,81\ *\ t)\ dt} [/mm] =
[mm] [v_0\ [/mm] * t - 9,81 [mm]\bruch{m}{s}[/mm] * [mm] t^{2}]^3_0 [/mm] =
[mm] \((20[/mm] [mm]\bruch{m}{s}[/mm] * 3 - 9,81 [mm]\bruch{m}{s}[/mm] * [mm] (3)^{2})\ [/mm] - 0 =
15,855 m
> b) Ein anch oben geworfener Stein kommt nach 4s wieder an
> der ABwurfstelle an. Wie groß ist die
> Anfangsgeschwindigkeit nd welche Höhe erreicht der Stein?
Hm bei der Frage b) hab ich keine Ahnung.
> Also ich komme damit überhaupt nicht klar... physikalisch
> kann ich das lösen mit formeln...aber wie zum teufel mache
> ich das mit Integralen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:46 Mi 09.01.2008 | Autor: | zahllos |
Wenn der Stein nach vier Sekunden wieder am Boden aufschlägt, hat er hatte er nach zwei Sekunden den Scheitelpunkt seiner Bewegung ereicht.
Die Anfangsgeschwindigkeit ist gleich der Endgeschwindigkeit und die ist gleich der Geschwindigkeit, die der Stein nach einer Falldauer von zwei Sekunden mit Anfangsgeschwindigkeit 0 hat. Die Steighöhe entspricht der bei einem Fall von zwei Sekunden mit Anfangsgeschwindigkeit 0 durchfallenen Höhe.
|
|
|
|