matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Aufgabe 1
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:49 Do 23.08.2007
Autor: Chrissi21

Aufgabe
Berechen Sie den Flächeninhalt A der Fläche, die von den Graphen der Ffunktion [mm] f(x)=-\bruch{1}{9}x^4+14 [/mm] und [mm] g(x)=x^2-4 [/mm] eingeschlossen wird.  

HI, ich weiß nicht, on dass was ich so berechnet hab richtig ist. Vieleicht könnte jemand diese Aufgabe mal durch sehen.

Zuerst habe ich die beiden Funktionen gleichgesetzt, mit dem Ergebniss:
[mm] -\bruch{1}{9}x^4-x^2+18. [/mm]
Dann habe ich die Schnittpunkte der beiden Funktionen berechnet, die bei beiden (3/5) ergeben.
Dann sieht das ganze jetzt so aus:
[mm] \integral_{3}^{0} -\bruch{1}{9}x^4-x^2+18\, [/mm] dx = [mm] \begin{bmatrix} \bruch{1}{5}*F(-\bruch{1}{45}x^5+14x)\end{bmatrix}=7,32 [/mm]
und
[mm] \integral_{3}^{0} -\bruch{1}{9}x^4-x^2+18\, [/mm] dx = [mm] \begin{bmatrix}\bruch{1}{3}x^3-4x\end{bmatrix}=-3. [/mm]

Mein Ergebnis währe dann 4,32.
Ob das so richtig ist, weiß ich halt nicht, wäre super, wenn mir hier jemand helfen könnte.



        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Do 23.08.2007
Autor: rainerS

Hallo!

> Berechen Sie den Flächeninhalt A der Fläche, die von den
> Graphen der Ffunktion [mm]f(x)=-\bruch{1}{9}x^4+14[/mm] und
> [mm]g(x)=x^2-4[/mm] eingeschlossen wird.
> HI, ich weiß nicht, on dass was ich so berechnet hab
> richtig ist. Vieleicht könnte jemand diese Aufgabe mal
> durch sehen.
>  
> Zuerst habe ich die beiden Funktionen gleichgesetzt, mit
> dem Ergebniss:
>  [mm]-\bruch{1}{9}x^4-x^2+18.[/mm]

[ok]

>  Dann habe ich die Schnittpunkte der beiden Funktionen
> berechnet, die bei beiden (3/5) ergeben.

Nicht ganz: beide Funktionen sind symmetrisch zur y-Achse (mal sie Dir auf!) und die beiden Schnittpunkte sind (-3/5) und (3/5). Du musst also von -3 bis +3 integrieren.

>  Dann sieht das ganze jetzt so aus:
>  [mm]\integral_{3}^{0} -\bruch{1}{9}x^4-x^2+18\,[/mm] dx =

Wie schon gesagt, sind die Integrationsgrenzen falsch. Wie kommst du auf die Integrationsgrenzen 0 und 3? Und vor allem, warum 3 bis 0 und nicht von 0 bis 3?

Außerdem meinst du wohl [mm]\integral (-\bruch{1}{9}x^4 +14 ) dx[/mm] ;-)

> [mm]\begin{bmatrix} \bruch{1}{5}*F(-\bruch{1}{45}x^5+14x)\end{bmatrix}=7,32[/mm]

[notok]Der Faktor 1/5 ist zuviel, und das F auch. [mm]-\bruch{1}{45}x^5+14x[/mm] ist richtig als Stammfunktion.

> und [mm]\integral_{3}^{0} -\bruch{1}{9}x^4-x^2+18\, dx = \begin{bmatrix}\bruch{1}{3}x^3-4x\end{bmatrix}=-3.[/mm]

Da meinst du sicher [mm]\integral_{3}^{0} (x^2-4) dx[/mm], dann stimmt die Stammfunktion.

Du kannst auch gleich die Differenz der beiden Funktionen integrieren, denn es ist egal, ob du zuerst die einzelnen Funktionen integrierst und dann die Ergebnisse voneinander abziehst, oder ob du die Differenz integrierst:
[mm]\integral_{-3}^{+3} \left(-\bruch{1}{9}x^4-x^2+18\right)\, dx [/mm]

Viele Grüße
   Rainer



Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Do 23.08.2007
Autor: Chrissi21

Ok, dann aber so:
[mm] \integral_{-3}^{3} (-\bruch{1}{9}x^4+14)dx=\begin{bmatrix}-\bruch{1}{45}x^5+14x\end{bmatrix}=36,6 [/mm]
[mm] \integral_{-3}^{3} x^2-4)dx=\begin{bmatrix}\bruch{1}{3}x^3-4x\end{bmatrix}=3 [/mm]
Dann wäre das Ergebniss also 33,6
Is das jetzt richtig?


Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Do 23.08.2007
Autor: Bastiane

Hallo Chrissi21!

> Ok, dann aber so:
>  [mm]\integral_{-3}^{3} (-\bruch{1}{9}x^4+14)dx=\begin{bmatrix}-\bruch{1}{45}x^5+14x\end{bmatrix}=36,6[/mm]
>  
> [mm]\integral_{-3}^{3} x^2-4)dx=\begin{bmatrix}\bruch{1}{3}x^3-4x\end{bmatrix}=3[/mm]
>  
> Dann wäre das Ergebniss also 33,6
>  Is das jetzt richtig?

Leider hast du in beiden Fällen nur eine Grenze eingesetzt. Es gilt doch: [mm] $\integral_a^b [/mm] f(x)=F(b)-F(a)$!

Da die Funktionen symmetrisch zur y-Achse sind, könntest du auch [mm] $\integral_a^0 [/mm] f(x)$ berechnen und das mit zwei multiplizieren.

Das richtige Ergebnis ist [mm] \frac{396}{5}=79,2. [/mm]

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 Do 23.08.2007
Autor: Chrissi21

Ah so, vielen Dank, dass ihr/du mir das ganze so gut erklärt habt. Bei nächsten mal passe ich genauer auf!

Gruß Chrissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]