matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieIntegralformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Integralformel
Integralformel < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 So 23.11.2014
Autor: AlfredGaebeli

Aufgabe
Sei [mm] (\Omega, \mathcal{A},\mu)[/mm] ein Massraum. Sei [mm] f:\Omega \rightarrow [0,\infty] [/mm] messbar. Man definiere die fallende Umordnung von [mm] f [/mm] als die Funktion [mm] g:[0,\infty) \rightarrow [0;\infty,], g(t):=\mu ( \lbrace x\in \Omega:f(x)\geq t \rbrace. [/mm]. Zeigen Sie:

a) [mm] g [/mm] ist Borel-messbar.
b) [mm] \int_{\Omega} f d\mu = \int_{[0,\infty)}g d\lambda [/mm]

Zu a)

ich bin mir nicht sicher, aber ich glaube ich soll irgendwie zeigen, dass die Menge [mm] \lbrace x\in \Omega:f(x)\geq [/mm] t [mm] \rbrace [/mm] in der sigma algebra [mm]\mathcall{A}[/mm] liegt, oder? Wie mache ich das?

b) Ich habe den Assistenten gefragt und er sagte, ich soll die Aussage zuerst fuer einfache Funktionen zeigen. Wie soll das gehen? Ich weiss, da [mm]f[/mm] messbar ist existiert eine Folge mit der Eigenschaft, dass [mm] f(x)=\lim_{n\to \infty} f_n(x) [/mm] mit [mm]f_1(x)\leq f_2(x)\leq ...[/mm] wie aber nutze ich das?

Dann soll ich eine beliebige messbare funktion [mm] f:\Omega \rightarrow [0,\infty] [/mm] mit einer Folge von einfachen Funktionen approximieren.


        
Bezug
Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 So 23.11.2014
Autor: fred97


> Sei [mm](\Omega, \mathcal{A},\mu)[/mm] ein Massraum. Sei [mm]f:\Omega \rightarrow [0,\infty][/mm]
> messbar. Man definiere die fallende Umordnung von [mm]f[/mm] als die
> Funktion [mm]g:[0,\infty) \rightarrow [0;\infty,], g(t):=\mu ( \lbrace x\in \Omega:f(x)\geq t \rbrace. [/mm].
> Zeigen Sie:
>  
> a) [mm]g[/mm] ist Borel-messbar.
>  b) [mm]\int_{\Omega} f d\mu = \int_{[0,\infty)}g d\lambda[/mm]
>  Zu
> a)
>  
> ich bin mir nicht sicher, aber ich glaube ich soll
> irgendwie zeigen, dass die Menge [mm]\lbrace x\in \Omega:f(x)\geq[/mm]
> t [mm]\rbrace[/mm] in der sigma algebra [mm]\mathcall{A}[/mm] liegt, oder?


Nein, Du musst diese Mengen unter die Lupe nehmen:

[mm]\lbrace x\in \Omega:g(x)\geq[/mm] t [mm]\rbrace[/mm]

>
> b) Ich habe den Assistenten gefragt und er sagte, ich soll
> die Aussage zuerst fuer einfache Funktionen zeigen. Wie
> soll das gehen?

Der Assi meint, dass Du zerst den Fall "f ist einfach" bearbeiten sollst.

FRED



> Ich weiss, da [mm]f[/mm] messbar ist existiert eine
> Folge mit der Eigenschaft, dass [mm]f(x)=\lim_{n\to \infty} f_n(x)[/mm]
> mit [mm]f_1(x)\leq f_2(x)\leq ...[/mm] wie aber nutze ich das?
>  
> Dann soll ich eine beliebige messbare funktion [mm]f:\Omega \rightarrow [0,\infty][/mm]
> mit einer Folge von einfachen Funktionen approximieren.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]