matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikIntegrale zur Wegstreckenb.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Integrale zur Wegstreckenb.
Integrale zur Wegstreckenb. < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale zur Wegstreckenb.: Begründung
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 20.04.2010
Autor: theromanian

Aufgabe
[mm] $S_A_B= \integral_{A}^{B}{ds}$ [/mm]

Wir haben heute gelernt, dass eine Teilstrecke auf einer Wurfbahn mit dem Integral,wie in der Aufgabenstellung beschrieben, ausgerechnet werden kann. Ich verstehe aber nicht warum, da doch das Integral die Fläche unter der Kurve bezeichnet und diese beiden doch nicht mal in der selben Dimension sind. Wäre super, wenn es mir jemand erklären könnte.

Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integrale zur Wegstreckenb.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Di 20.04.2010
Autor: Kroni

Hi,

wenn du ne Funktion $f(x)$ hast, und die ueber $x$ integrierst, ists die Flaeche unterhalb des Graphen. Du integrierst jetzt aber ueber das Wegelement [mm] $\mathrm{d}s$. [/mm] Das kann man sich dann vorstellen, als ein infinitesimales kleines Stueck Weglaenger auf deinem Weg, den du gehst. Also, wenns zB $2D$ ist [mm] $\mathrm{d}s [/mm] = [mm] \sqrt{\mathrm{d}x^2+\mathrm{d}y^2}$. [/mm] Wenn man das jetzt integriert (was ja eigentlich auch nichts anderes ist, als ne Summation, nur dass die Schrittweite gegen Null geht), dann summiert man alle kleinen Wegelemente [mm] $\mathrm{d}s$ [/mm] auf, und erhaelt dann so die Laenge des Pfades.
Das macht man dann meist ueber eine Weg-Parametrisierung, wie es zB []hier oder []hier unter 'Laenge des Weges' bzw Funktionsgraphen steht.

Wenn du dir dann die Def. von [mm] $\mathrm{d}s$ [/mm] anguckst, siehst du, dass es Dimension Laenge hat.

Es ist halt dann nicht mehr so 'einfach', dass man ueber ein [mm] $\mathrm{d}x$ [/mm] integriert, sondern jetzt ueber ein komplizierteres Gebilde, dass eben die Differentiale unter der Wurzel stehen hat. Ich denke, dass man dann mit der 'infinitesimales Wegelement' (das kann man sich dann auch durch die Laenge des infinitesimalen Vektors der Verbindungslinie der Koordinaten $(x,y)$ und [mm] (x+\mathrm{d}x, y+\mathrm{d}y)$ [/mm] 'herleiten') und dem Integral als Summation erklaeren kann.

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]