matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrale mit Variable m
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integrale mit Variable m
Integrale mit Variable m < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale mit Variable m: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 So 05.11.2006
Autor: Kristien

Hi, habe hier folgende Frage: Für welchen Wert von m ist die rote Fläche gleich groß wie die blaue?  Drücken Sie dazu zunächst die Flächeninhalte in Abhängigkeit von z aus und bestimmen Sie daraus m.

Zur Aufgabe. Die blaue Fläche ist: 7,145833 groß
Die Funktionen lauten: f(x)= [mm] -(x-2)^2+4 [/mm]
und y=mx

Die Funktionen schneiden sich bei z

Um die blaue fläche zu berechnen(ohne m Angabe) rechnet man [mm] \integral_{0}^{z}(-x^2+4x)-(mx) [/mm]

um die rote Fläche zu berechnen, rechnet man: [mm] \integral_{z}^{4}mx+x^2-4x [/mm]

Meine Frage: Wenn ich nu versuche, die Fläche in Abhängigkeit von z auszudrücken, kommt eine merkwürdig lange Lösung Und außerdem, wie soll ich denn herausfinden, wie m bei der roten Fläche beschaffen sein muss, um die selbe Flächengröße wie die blaue Fläche zu erhalten! Ich habe ja zwei Variablen in der Gleichung. Also z und m? Wie funktioniert das ? Danke

        
Bezug
Integrale mit Variable m: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 So 05.11.2006
Autor: nitro1185

Hallo!!

Okay ich glaube dir mal dass es die beiden Flächen sind :-)!!

Berechnung von z!!

f(x)=m*x => [mm] -x^2+4*x=m*x [/mm] => [mm] z=2+/-\wurzel{4-m} [/mm]

=> m darf NICHT größer als 4 sein. m [mm] \le [/mm] 4!!!Nehme für z=2+.. da laut skizze z sicherlich größer als 2 ist!!!

2.) Berechnung der beiden Integrale

A(Blau) und A(rot) einfach integrieren und halt für z den oben berechneten wert einsetzen!

=> 8*m+64/3-32=0

Setze am besten beim integrieren für z = z ein und nicht den ganzen wert , ist übersichtlicher.

=> m=15/12 !! MFG Daniel


Bezug
                
Bezug
Integrale mit Variable m: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 05.11.2006
Autor: Kristien

Hi, wie kommt man auf z und außerdem sollte man doch die Flächeninhalte von blau und rot in Abhängigkeit von z ausdrücken!Und aus diesem
dann m bestimmen! Man kann z Außerdem doch solange nicht bestimmen, solange man m nicht hat, denn z ist die Schnittstelle und die ist von m abhängig. Danke


Bezug
                        
Bezug
Integrale mit Variable m: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 So 05.11.2006
Autor: nitro1185

Hallo!!

Ja genau z ist von m abhängig aber genau das ist der sinn. Ich habe die beiden Kurven einfach geschnitten und dann wie erwähnt z(m) herausbekommen. Also f(x)=y(x) gleichsetzen und die quadratische Gleichung lösen. Dieses z(m) setze ich dann in die Grenzen des Integrales ein wie von dir geschrieben. Dann bekomme ich beide Flächen in Abhängigkeit von z(m) heraus, wobei sich die meisten Terme beim Gleichsetzen der Flächen kürzen, außer den von mir geschriebenen Term. alles klar? mfg dani

Bezug
                                
Bezug
Integrale mit Variable m: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 06.11.2006
Autor: Kristien

Hallo, wieso ist [mm] -x^2+4x=mx [/mm]  x= [mm] \bruch{2}{-\wurzel{4-m}} [/mm]
Nach meiner Berechnung ist das nämlich: x=4-m!!! Dankschö.

Bezug
                                        
Bezug
Integrale mit Variable m: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 06.11.2006
Autor: Slartibartfast

Habe den restlichen Thread nicht durchgelesen, deshalb fällt die Lösung x=0 wahrscheinlich raus, aber abgesehen davon komme ich auch auf x=4-m

Bezug
                                                
Bezug
Integrale mit Variable m: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:38 Do 30.11.2006
Autor: Floh

genauso ist es!

$ [mm] \integral_{0}^{4}{(f(x)-mx) dx} [/mm] $

daraus folgt dann [mm] m=\bruch{4}{3} [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]