matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrale m. unbeschränkter In
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integrale m. unbeschränkter In
Integrale m. unbeschränkter In < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale m. unbeschränkter In: Bestimmung der Stammfunktion
Status: (Frage) beantwortet Status 
Datum: 14:38 Sa 18.04.2015
Autor: Olli1968

Aufgabe
Berechnen Sie [mm]\integral_{a}^{2}{\bruch{1}{\wurzel[3]{(x-1)^{2}}}dx}[/mm] ;[mm]a\in(1;2)[/mm] mithilfe des Hauptsatzes und untersuchen Sie die sich hieraus ergebende Funktion auf Konvergenz für [mm]a\to1[/mm]. Verfahren Sie entsprechend mit  [mm]\integral_{-1}^{b}{\bruch{1}{\wurzel[3]{(x-1)^{2}}}dx}[/mm] ;[mm]b\in(-1;1)[/mm] für für [mm]b\to1[/mm].


Hallo liebe Mathefreunde,

obige Frage habe ich in keinem anderen Forum gepostet. Soweit kam ich mit der Aufgabe klar, da die Stammfunktion [mm]F(x)=\begin{cases} -3\wurzel[3]{-x+1}, & \mbox{für } x \mbox{ <1} \\ 3\wurzel[3]{x-1}, & \mbox{für } x \mbox{ >1} \end{cases}[/mm] angegeben war.
Mein Frage: Wie kommt man allerdings darauf?

Ich habe mir dazu folgende Gedanken gemacht und wollte nun wissen, ob es so richtig ist ...
Definitionsbereich [mm]x \in D_f=\IR \backslash \{1\}[/mm]

Fall 1: [mm]x>1[/mm]
[mm]\integral{\bruch{1}{\wurzel[3]{(x-1)^{2}}}}}dx[/mm]
Substitution: [mm]z=x-1[/mm] und [mm]dz=dx[/mm] damit erhält man [mm]\integral{\bruch{1}{\wurzel[3]{z^{2}}}dz}=3\wurzel[3]{z}+c [/mm] und nach Resubstitution [mm]F(x)=3\wurzel[3]{x-1}+c [/mm] ; für [mm]x>1[/mm]

Fall 2: [mm]x<1[/mm]
[mm]\integral{\bruch{1}{\wurzel[3]{(x-1)^{2}}}}}dx[/mm]
Substitution: [mm]z=x-1[/mm] da aber [mm]z<0[/mm] habe ich [mm]-z=x-1[/mm] angesetzt und somit [mm]z=-x+1[/mm] erhalten und somit [mm]dz=(-1) dx[/mm] erhalten. Damit erhielt ich [mm](-1)\integral{\bruch{1}{\wurzel[3]{(-z)^{2}}}dz}=-3\wurzel[3]{z}+c [/mm] und nach Resubstitution [mm]F(x)=-3\wurzel[3]{-x+1}+c [/mm] ; für [mm]x<1[/mm]

Es kommt zwar das raus, was man erwartet aber hier bin ich mir gar nicht sicher ob mein Weg so richtig ist?

Vielen Dank


        
Bezug
Integrale m. unbeschränkter In: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Sa 18.04.2015
Autor: reverend

Hallo Olli,

Dein Weg ist ok. Er sieht durch die Schreibweise nur unnötig kompliziert aus, wozu die Aufgabenstellung auch verleitet.

Wenn Du Dir [mm] \bruch{1}{\wurzel[3]{z}^2}=z^{-2/3} [/mm] klarmachst, ist das ganze übersichtlicher und dadurch leichter verständlich.

> Berechnen Sie
> [mm]\integral_{a}^{2}{\bruch{1}{\wurzel[3]{(x-1)^{2}}}dx}[/mm]
> ;[mm]a\in(1;2)[/mm] mithilfe des Hauptsatzes und untersuchen Sie die
> sich hieraus ergebende Funktion auf Konvergenz für [mm]a\to1[/mm].
> Verfahren Sie entsprechend mit  
> [mm]\integral_{-1}^{b}{\bruch{1}{\wurzel[3]{(x-1)^{2}}}dx}[/mm]
> ;[mm]b\in(-1;1)[/mm] für für [mm]b\to1[/mm].
>  Hallo liebe Mathefreunde,
>  
> obige Frage habe ich in keinem anderen Forum gepostet.
> Soweit kam ich mit der Aufgabe klar, da die Stammfunktion
> [mm]F(x)=\begin{cases} -3\wurzel[3]{-x+1}, & \mbox{für } x \mbox{ <1} \\ 3\wurzel[3]{x-1}, & \mbox{für } x \mbox{ >1} \end{cases}[/mm]
> angegeben war.
> Mein Frage: Wie kommt man allerdings darauf?
>  
> Ich habe mir dazu folgende Gedanken gemacht und wollte nun
> wissen, ob es so richtig ist ...
>  Definitionsbereich [mm]x \in D_f=\IR \backslash \{1\}[/mm]
>  
> Fall 1: [mm]x>1[/mm]
>  [mm]\integral{\bruch{1}{\wurzel[3]{(x-1)^{2}}}}}dx[/mm]
>  Substitution: [mm]z=x-1[/mm] und [mm]dz=dx[/mm] damit erhält man
> [mm]\integral{\bruch{1}{\wurzel[3]{z^{2}}}dz}=3\wurzel[3]{z}+c[/mm]
> und nach Resubstitution [mm]F(x)=3\wurzel[3]{x-1}+c[/mm] ; für [mm]x>1[/mm]
>  
> Fall 2: [mm]x<1[/mm]
>  [mm]\integral{\bruch{1}{\wurzel[3]{(x-1)^{2}}}}}dx[/mm]
>  Substitution: [mm]z=x-1[/mm] da aber [mm]z<0[/mm] habe ich [mm]-z=x-1[/mm] angesetzt
> und somit [mm]z=-x+1[/mm] erhalten und somit [mm]dz=(-1) dx[/mm] erhalten.
> Damit erhielt ich
> [mm](-1)\integral{\bruch{1}{\wurzel[3]{(-z)^{2}}}dz}=-3\wurzel[3]{z}+c[/mm]
> und nach Resubstitution [mm]F(x)=-3\wurzel[3]{-x+1}+c[/mm] ; für
> [mm]x<1[/mm]
>  
> Es kommt zwar das raus, was man erwartet aber hier bin ich
> mir gar nicht sicher ob mein Weg so richtig ist?

Ja, alles ok.

> Vielen Dank

Grüße
reverend  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]