matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegrale, Intervallzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Integrale, Intervallzerlegung
Integrale, Intervallzerlegung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale, Intervallzerlegung: Übung
Status: (Frage) beantwortet Status 
Datum: 20:19 Do 19.01.2006
Autor: Edi1982

Aufgabe
Für die Funktion f(x) = [mm] x^{-2} [/mm] und reelle 0<a<b zeige man, dass für jede Unterteilung Z des Intervalls [a,b] folgende Abschätzung gilt:

U(Z,f) [mm] \le \bruch{1}{a} [/mm] - [mm] \bruch{1}{b} \le [/mm] O(Z,f).

Also ich weis, dass

U(Z,f):= [mm] \summe_{i=1}^{n}m_i(t_i [/mm] - [mm] t_{i-1}) [/mm] ist.

Wobei Z = [mm] {t_0,t_1,...,t_n} [/mm] und [mm] m_i [/mm] := inf{f(x) | [mm] t_{i-1} \le [/mm] x [mm] \le t_i [/mm] } ist.

Und ich weis, dass

O(Z,f):= [mm] \summe_{i=1}^{n}M_i(t_i [/mm] - [mm] t_{i-1}) [/mm] ist.

Mit [mm] M_i [/mm] := sup{f(x) | [mm] t_{i-1} \le [/mm] x [mm] \le t_i [/mm] }

Aber ich weis nicht wie ich das hier benutzen soll.

Kann mir jemand helfen?

        
Bezug
Integrale, Intervallzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Do 19.01.2006
Autor: Hanno

Hallo Edi!

Zwei Lösungen biete ich dir an:

1.) Zur Erinnerung: Es sei [mm] ${\cal Z}=[a=x_0,x_1,...,x_n=b]$ [/mm] eine beliebige Zerlegung des Intervalls $[a,b]$. Dann ist [mm] $\underline{\sum}(f,{\cal Z}):=\sum_{i=1}^{n} (x_i-x_{i-1})\inf f([x_{i-1},x_i])$ [/mm] die Untersumme von $f$ für die Zerlegung [mm] ${\cal Z}$. [/mm] Analog dazu ist [mm] $\overlineline{\sum}(f,{\cal Z}):=\sum_{i=1}^{n} (x_i-x_{i-1})\sup f([x_{i-1},x_i])$ [/mm] die Obersumme. Ferner bezeichne [mm] ${\cal U}$ [/mm] die Menge aller Untersummen und [mm] ${\cal O}$ [/mm] die Menge aller Obersummen.
Man kann zeigen, dass für zwei beliebige Zerlegungen [mm] ${\cal Z}_1,{\cal Z}_2$ [/mm] stets [mm] $\underline{\sum} (f,{\cal Z}_1)\leq\overline{\sum}(f,{\cal Z}_2)$ [/mm] gilt.
Falls [mm] $\inf {\cal O}=\sup{\cal U}$, [/mm] so definiert man [mm] $\int_{a}^{b} [/mm] f = [mm] \inf{\cal O}$ [/mm] und nennt den Ausdruck das bestimmte Integral von $f$ über $[a,b]$. Insbesondere gilt [mm] $\underline{\sum} (f,{\cal Z}_1)\leq \int_{a}^{b} [/mm] f [mm] \leq\overline{\sum}(f,{\cal Z}_2)$ [/mm] für zwei beliebige Zerlegungen [mm] ${\cal Z}_1,{\cal Z}_2$. [/mm]
Bekanntermaßen ist $F$ mit $F(x)= [mm] \int_{a}^{x} [/mm] f$ eine Stammfunktion zu $f$.
In diesem Falle, also für $f$ mit [mm] $f(x)=\frac{1}{x^2}$, [/mm] ist aber auch [mm] $x\mapsto -\frac{1}{x}$ [/mm] Stammfunktion zu, d.h. wir haben [mm] $\int_{a}^{b} \frac{1}{x^2} [/mm] dx = [mm] F(b)-F(a)=-\frac{1}{b}+\frac{1}{a}=\frac{1}{a}-\frac{1}{b}$. [/mm]
Setzt man dies in obige Gleichung ein, erhält man [mm] $\underline{\sum} (f,{\cal Z}_1)\leq \frac{1}{a}-\frac{1}{b} \leq\overline{\sum}(f,{\cal Z}_2)$, [/mm] was mit [mm] ${\cal Z}_1={\cal Z}_2$ [/mm] genau das gewünschte Resultat ist.

2.) Für beliebige, von Null verschiedene reelle Zahlen $x,y$ gilt [mm] $\frac{y-x}{y^2}\leq \frac{1}{x}-\frac{1}{y}$ [/mm] und [mm] $\frac{y-x}{x^2}\geq \frac{1}{x}-\frac{1}{y}$; [/mm] den Beweis überlasse ich dir, er ergibt sich aus elementaren Umformungen.
Sei nun wieder [mm] ${\cal Z}=[a=x_0,x_1,...,x_n=b]$ [/mm] eine Zerlegung von $[a,b]$. Dann ist [mm] $\underline{\sum}(f,{\cal Z})=\sum_{i=1}^{n}(x_i-x_{i-1})\inf f([x_{i-1},x_i])=\sum_{i=1}^{n}\frac{x_i-x_{i-1}}{x_i^2}\leq\sum_{i=1}^{n}\frac{1}{x_{i-1}}-\frac{1}{x_{i}}$ [/mm] und [mm] $\overlineline{\sum}(f,{\cal Z})=\sum_{i=1}^{n}(x_i-x_{i-1})\sup f([x_{i-1},x_i])=\sum_{i=1}^{n}\frac{x_i-x_{i-1}}{x_{i-1}^2}\geq\sum_{i=1}^{n}\frac{1}{x_{i-1}}-\frac{1}{x_{i}}$ [/mm]
Die Ausdrücke auf der rechten Seite entsprechen genau [mm] $\frac{1}{a}-\frac{1}{b}$; [/mm] mach dir dies klar. Damit ist der Beweis dann auch bereits erbracht.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]