matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integrale
Integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 So 05.09.2010
Autor: Mathics

Aufgabe
Eine Waldfläche wird durch Holzeinschlag um 10 ha pro Jahr verringert. Nach 5 Jahren wird der Einschlag beendet und die Fläche wird wieder aufgeforstet, sodass die Waldfläche dann um 7 ha pro Jahr zunimmt.

a) Die Funktion f beschreibt die Veränderung der Waldfläche pro Jahr für den Zeitraum der ersten 15 Jahre nach Beginn des Holzeinschlags.
Stellen Sie f als abschnittsweise definierte Funktion dar und zeichnen Sie den Graphen von f.

b) Untersuchen Sie, wann die Waldfläche wieder die ursprüngliche Größe erreicht hat.  

Hallo,

ich habe den grapgen gezeichnet und es sieht ca. so aus:

http://img696.imageshack.us/img696/979/meo.png

aber wie kommt man auf eine Funktionsgleichung? Ich meine, ich kann da auch keine regression oder so anwenden, wie berechent man das?

Danke.

LG

        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 So 05.09.2010
Autor: pythagora

Hallo,
zum Bild: dein Graph schnedet die zeit-achse bei 5 Jahre, oder??? (Sieht irgendwie nicht danach aus, oder ich schiele gerade ein wenig...)

> aber wie kommt man auf eine Funktionsgleichung? Ich meine,
> ich kann da auch keine regression oder so anwenden, wie
> berechent man das?

Aufgabnteil a) verrät es:

> Stellen Sie f als abschnittsweise definierte Funktion dar
> und zeichnen Sie den Graphen von f.

also definierst du z.b. so:
f(x)=-10 ha/jahr  für 0 [mm] \ge [/mm] x [mm] \le [/mm] 5
f(x)=7 ha/jahr  für 5 [mm] \ge [/mm] x [mm] \le \infty [/mm]

verständlich??

Zu b)
du weißt ja, wieviel in den ersten 5 jahren verloren gegangen ist, jetzt musst du schauen/berechnen, wie lange es dauerst bis du wieder auf Null kommst, also suchst du die selbe zahl, wie in den ersten 5 jahren, aber halt das "positive"... (Ich hoffe, der tipp ich verständlich..... wenn nicht, frag gerne...)


LG
pythagora




Bezug
                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Mo 06.09.2010
Autor: Mathics

ja, der soll bei 5 schneiden, etwas ungeanu gezeichnet sorry.

Demnach habe ich jetzt bei

b)   Nach ca. 7 (ca. 7,14) Jahren erreicht es die ursprüngliche Größe.

Und dann steht als zusätzliche c) :

Bestimmen sie die Integrale
(1) [mm] \integral_{0}^{5}{f(x) dx} [/mm]
(2) [mm] \integral_{5}^{15}{f(x) dx} [/mm]
(3) [mm] \integral_{2}^{10}{f(x) dx} [/mm]

Hab da raus:
(1) -50
(2) 70
(3) 5

ist das so richtig?

Dann fragen die noch: Erläutern sie die Bedeutung dieser drei Intergalwerte

Zu (1) kann man ja sagen, das beschreibt die Gesamtgröße, die in den 5 Jahren verlroen gegangen ist.
Aber was bedeuten (2) und (3)


Danke.

Lg

Bezug
                        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mo 06.09.2010
Autor: MathePower

Hallo Mathics,

> ja, der soll bei 5 schneiden, etwas ungeanu gezeichnet
> sorry.
>  
> Demnach habe ich jetzt bei
>
> b)   Nach ca. 7 (ca. 7,14) Jahren erreicht es die
> ursprüngliche Größe.


[ok]


>  
> Und dann steht als zusätzliche c) :
>  
> Bestimmen sie die Integrale
> (1) [mm]\integral_{0}^{5}{f(x) dx}[/mm]
>  (2) [mm]\integral_{5}^{15}{f(x) dx}[/mm]
>  
> (3) [mm]\integral_{2}^{10}{f(x) dx}[/mm]
>  
> Hab da raus:
>  (1) -50
>  (2) 70
>  (3) 5
>  
> ist das so richtig?



Ja. [ok]



> Dann fragen die noch: Erläutern sie die Bedeutung dieser
> drei Intergalwerte
>  
> Zu (1) kann man ja sagen, das beschreibt die Gesamtgröße,
> die in den 5 Jahren verlroen gegangen ist.
>  Aber was bedeuten (2) und (3)
>  


Nun, die 70 bedeutet die Zunahme der Waldfäche vom 5 bis zum 15. Jahr.

Analog, die 5.


>
> Danke.
>  
> Lg



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]