matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Richtig so ?
Status: (Frage) beantwortet Status 
Datum: 19:35 Fr 21.04.2006
Autor: DeusRa

Aufgabe
Es sei $f: [mm] \IR \to \IR^{+}$ [/mm] eine stetig diffbare Funktion und einen [mm] $a\le [/mm] b$ zwei reele Zahlen.
Berechnen Sie:
(a) [mm] \integral_{a}^{b}{\bruch{f'}{f}} [/mm]
(b) [mm] \integral_{a}^{b}{f'*f} [/mm]

Hallo,
also ich habe diese berechnet wollte nur wissen, ob das so richtig ist:

Zu (a):
[mm] \integral_{a}^{b}{\bruch{f'(x)}{f(x)} dx}=\integral_{a}^{b}{f'(x)* \bruch{1}{f(x)} dx} [/mm] = (Part. Integration) =
[mm] [\bruch{f(x)}{f(x)}]-\integral_{a}^{b}{ f(x)*\bruch{-1}{f²(x)} dx} [/mm] =
[mm] [\bruch{f(x)}{f(x)}]-\integral_{a}^{b}{ \bruch{-1}{f(x)} dx}= [/mm]
[mm] [\bruch{f(x)}{f(x)}] [/mm] + $[ln(f(x)]$ = [mm] \bruch{f(b)}{f(b)}-\bruch{f(a)}{f(a)} [/mm] + $[ln(f(x)]$ = 1-1+$[ln(f(x)]=[ln(f(x)]$
Also ist die Lösung [mm] [ln(f(x)]^{b}_a. [/mm]
Wenn das richtig ist, muss ich hierbei noch was bedenken ?
Also Betragsstriche, oder irgendwas mit Limes, wegen des uneigentlichen Integrals ???

Zu (b):
[mm] \integral_{a}^{b}{f(x)'*f(x) dx} [/mm] = (Substitution u:=f(x) ) =
[mm] \integral_{a}^{b}{u'*u du} [/mm] = [mm] \integral_{a}^{b}{1 *u du} [/mm] = (Part. Integr.) = [mm] [u²]-\integral_{a}^{b}{u du}= $[u²]-[\bruch{1}{2}*u²]$ [/mm] = [mm] $[\bruch{1}{2}*u²]$ [/mm] = (Resubstitution) = [mm] [\bruch{1}{2}*f²(x)]^{b}_a [/mm]

So das wärs.

        
Bezug
Integrale: mehrere Fehler heben sich auf!
Status: (Antwort) fertig Status 
Datum: 19:52 Fr 21.04.2006
Autor: Loddar

Hallo DeusRa!


Du machst hier immer mehrere Fehler, die sich am Ende wieder aufheben, so dass zwar die Ergebnisse stimmen ... nicht aber der Weg.


Beide Integrale werden über die Substitution $u \ := \ f(x)$ gelöst. Dabei musst Du aber auch jeweils das Differential $dx_$ durch die andere Variable $du_$ ersetzen:

$u' \ = \ [mm] \bruch{du}{dx} [/mm] \ = \ [mm] \left[ \ f(x) \ \right]' [/mm] \ = \ f'(x)$     [mm] $\gdw$ [/mm]     $dx \ = \ [mm] \bruch{du}{f'(x)}$
[/mm]


> Zu (a):
> [mm]\integral_{a}^{b}{\bruch{f'(x)}{f(x)} dx}=\integral_{a}^{b}{f'(x)* \bruch{1}{f(x)} dx}[/mm] = (Part. Integration) = [mm][\bruch{f(x)}{f(x)}]-\integral_{a}^{b}{ f(x)*\bruch{-1}{f²(x)} dx}[/mm]

Hier liegt der erste Fehler durch Weglassen der inneren Ableitung gemäß MBKettenregel :

[mm] $\left[ \ \bruch{1}{f(x)} \ \right]' [/mm] \ = \ [mm] \left[ \ f^{-1}(x) \ \right]' [/mm] \ = \ [mm] (-1)*f^{-2}(x)*\red{f'(x)} [/mm] \ = \ - [mm] \bruch{f'(x)}{f^2(x)}$ [/mm]



> = [mm][\bruch{f(x)}{f(x)}]-\integral_{a}^{b}{ \bruch{-1}{f(x)} dx}=[/mm] [mm][\bruch{f(x)}{f(x)}][/mm] + [mm][ln(f(x)][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Zweiter Fehler: $\integral{\bruch{1}{f(x)} \ dx} \ \red{\not=} \ \ln|f(x)| + C$

Das gilt nur für $\integral{\bruch{1}{x} \ dx} \ = \ \ln|x| + C$



Also wie oben geschrieben: Substitution!



> Also Betragsstriche, oder irgendwas mit Limes, wegen des
> uneigentlichen Integrals ???

Welches uneigentliche Integral?

Die Betragsstriche gehören im ersten Schritt hin, können aber entfallen, da gemäß Aufgabenstellung die Funktion $f_$ abgebildet wird auf $\IR^{\red{+}$ . Es gilt also: $f(x) \ > \ 0$  $\Rightarrow$  $|f(x)| \ = \ f(x)$


  

> Zu (b):
> [mm]\integral_{a}^{b}{f(x)'*f(x) dx}[/mm] = (Substitution u:=f(x) )  = [mm]\integral_{a}^{b}{u'*u du}[/mm] = [mm]\integral_{a}^{b}{1 *u du}[/mm] =

Wieder zwei Fehler: $dx$ wurde nicht korrekt durch $du_$ substituiert (siehe oben).

Zudem setzt Du hier plötzlich $u' \ = \ 1$ . Warum?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]