matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integralbestimmung
Integralbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 So 05.02.2006
Autor: KatjaNg

Aufgabe
Überprüfen der Inergrale!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


a) [mm] \integral x^{2}*e^{-0,5} [/mm] dx = [mm] -2e^{-0,5x}*(x^{2}+4x+8)+c [/mm]
b) [mm] \integral x^{3}*e^{-x} [/mm] dx = [mm] e^{-x}*(-x^{3}+3x^{2}+6x+6)+c [/mm]
c) [mm] \integral [/mm] xln(x-1) dx= ??
Bei der Aifgabe, weis ich nicht ganz was am geeignesten ist, also was u und was v´sein soll. u= x und v´=ln(x-1) ?? Aber wie lautet dann v?
d) [mm] \integral(lnx)^{2} [/mm] dx= ??
kann man auch lnx*lnx schreiben? Wenn ja, dann müsste lnx einmal u und einmal v´sein, aber wie lautet dann v?
e) [mm] \integral x^{2}*cosx [/mm] dx= [mm] x^{2}*sinx-x^{2}*2cosx+c [/mm]

Wär toll wenn jemand mal drüber schauen bzw. mir helfen würde. Danke schon mal im Voraus!Mfg Katja

        
Bezug
Integralbestimmung: antworten
Status: (Antwort) noch nicht fertig Status 
Datum: 11:59 So 05.02.2006
Autor: kampfsocke

Hallo,

Aufgabe a und b hast du richtig.

für Aufgabe d bekomme ich
(xlnx-x)lnx-xlnx-x.
du kannst das Integral natürlich so umschrieben die du es gemacht hast((lnx)²=lnx*lnx). das macht die sache dich erhebelich einfacher.
ln x integriert ist xlnx-x. Das kannst du gleich überprüfen indem du das mal ableitest.

Für den Teil e habe ich was anderes als du: 2xcosx+(x²-2)sinx

in Teil c hab ich bei mir eben einen fehler gefunden, dass muss ich eben nochmal machen. das reiche ich gleich nach.

hoffe das hat dir ein bisschen geholen
//Sara

Bezug
        
Bezug
Integralbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 So 05.02.2006
Autor: kampfsocke

Hallo, ich muss leider erst mal aufgeben. Teil c hab ich immernoch nicht hin bekommen und muss jetzt erst mal weg. Wenn  bis heute abend noch keiner der richtigen Helden hier geantwortet hat, versuche ich mich nochmal dran.
sry
//Sara

Bezug
        
Bezug
Integralbestimmung: Aufgabe d.)
Status: (Antwort) fertig Status 
Datum: 12:22 So 05.02.2006
Autor: Loddar

Hallo Katja,

[willkommenmr] !!


Tipp zum lösen von aufgabe d.) Wende hier partielle Integration an:


[mm] $\integral{\left[\ln(x)\right]^2 \ dx} [/mm] \ = \ [mm] \integral{\red{1}*\left[\ln(x)\right]^2 \ dx}$ [/mm]

Wähle also: $u' \ := \ 1$ sowie $v \ := \ [mm] [\ln(x)]^2$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]