matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralberechnung über Sinus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integralberechnung über Sinus
Integralberechnung über Sinus < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung über Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:03 Mo 03.03.2008
Autor: haploid

Aufgabe
Beweise:
[mm] A_{n}A_{m}\integral_{0}^{a}{sin n\bruch{\pi}{a}x*sin m\bruch{\pi}{a}x dx}=0 [/mm] ; [mm] n\not=m [/mm]

Hallo!
Für n=m ist das Ergebnis 1, und hier bekomme ich die Lösung auch mit partieller Integration hin. Aber wie geht das dann in der anderen Aufgabe?
Vielen Dank für alle Bemühungen!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralberechnung über Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Mo 03.03.2008
Autor: rainerS

Hallo!

> Beweise:
>  [mm]A_{n}A_{m}\integral_{0}^{a}{\sin (n\bruch{\pi}{a}x)*\sin (m\bruch{\pi}{a}x) dx}=0[/mm] ; [mm]n\not=m[/mm]
>  Hallo!
>  Für n=m ist das Ergebnis 1, und hier bekomme ich die
> Lösung auch mit partieller Integration hin. Aber wie geht
> das dann in der anderen Aufgabe?

Am Einfachsten ist es, wenn du das Produkt der beiden Sinusfunktionen umformst, über die Additionstheoreme:

$ [mm] \sin\alpha*\sin\beta [/mm] = [mm] \bruch{1}{2}(\cos(\alpha-\beta) [/mm] - [mm] \cos(\alpha+\beta)) [/mm] $.

Dann musst du nur noch normale Cosinusterme integrieren.

Viele Grüße
   Rainer



Bezug
                
Bezug
Integralberechnung über Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Mo 03.03.2008
Autor: haploid

Aha.
Ok, dann hätte ich also:
[mm] A_{n}A_{m}\integral_{0}^{a}{\sin (n\bruch{\pi}{a}x)\cdot{}\sin (m\bruch{\pi}{a}x) dx}= [/mm]
[mm] \bruch{1}{2}A_{n}A_{m}\integral_{0}^{a}{\cos(\bruch{\pi}{a}x(n-m))-\cos(\bruch{\pi}{a}x(n+m))dx}=0 [/mm]
Aber was hilft mir das dann?
Die Seite http://integrals.wolfram.com/index.jsp rechnet dafür ein ganz kompliziertes Integral aus, mit dem ich leider auch nicht zum Ziel komm. Oder hab ich was übersehen?
Nochmal Dankeschön...


Bezug
                        
Bezug
Integralberechnung über Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 03.03.2008
Autor: Marcel

Hallo,

> Aha.
>  Ok, dann hätte ich also:
>  [mm]A_{n}A_{m}\integral_{0}^{a}{\sin (n\bruch{\pi}{a}x)\cdot{}\sin (m\bruch{\pi}{a}x) dx}=[/mm]
>  
> [mm]\bruch{1}{2}A_{n}A_{m}\integral_{0}^{a}{\cos(\bruch{\pi}{a}x(n-m))-\cos(\bruch{\pi}{a}x(n+m))dx}=0[/mm]
>  Aber was hilft mir das dann?
>  Die Seite http://integrals.wolfram.com/index.jsp rechnet
> dafür ein ganz kompliziertes Integral aus, mit dem ich
> leider auch nicht zum Ziel komm. Oder hab ich was
> übersehen?
>  Nochmal Dankeschön...

ich hab' mir die Seite nicht angeguckt, aber wegen $n [mm] \not=m$ [/mm] ist
$F: x [mm] \mapsto \frac{a}{\pi}\frac{1}{n-m}\sin\left(\frac{\pi}{a}x(n-m)\right)$ [/mm]

eine Stammfunktion für
$f: x [mm] \mapsto \cos\left(\bruch{\pi}{a}x(n-m)\right)$ [/mm]

(Entweder bei [mm] $\int{\cos\left(\bruch{\pi}{a}x(n-m)\right)dx}$ [/mm] geeignete Substitution druchführen, oder einfach nachrechnen, dass $F'=f$.)

Analoges gilt, wenn oben $n+m$ anstatt $n-m$ steht, falls dann $n [mm] \not=-m$ [/mm] (vielleicht kann bei Euch der letztgenannte Fall eh nicht auftreten, da vielleicht $n,m [mm] \in \IN$?). [/mm]

Außerdem soolltest Du vorher benutzen:
[mm] $\int_{0}^{a}(f+g)=\int_0^a [/mm] f [mm] +\int_0^a [/mm] g$

Gruß,
Marcel

Bezug
                                
Bezug
Integralberechnung über Sinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Mo 03.03.2008
Autor: haploid

Ok, Danke schön! Jetzt kann ichs nachvollziehen...
Und ja, [mm] n\not=m, [/mm] da das ganze die allgemeine Lösung für eine normierte Schwingungsgleichung ist...

Bezug
                                
Bezug
Integralberechnung über Sinus: erneute Frage
Status: (Frage) beantwortet Status 
Datum: 12:57 So 22.06.2008
Autor: haploid

Es ist schon länger her, dass ich das gefragt habe, aber ich kann meine Rechnung leider nicht mehr nachvollziehen ^^.
Und zwar hab ich folgendes mit Stammfunktion:
[mm] \frac{1}{2} A_n A_m \{\frac{a}{\pi}\frac{1}{n-m}\sin\left(\pi(n-m)\right)\ - \frac{a}{\pi}\frac{1}{n+m}\sin\left(\pi(n+m)\right)\} [/mm] = [mm] 0\$ [/mm]
Stimmt das so? Und wie gehts jetzt weiter? Denn wenn ich mit meinem Taschenrechner Werte eingebe, kommt nicht 0 raus. n und m sind natürliche Zahlen.
Danke für alle Antworten!

Bezug
                                        
Bezug
Integralberechnung über Sinus: Ganzzahlige Vielfache
Status: (Antwort) fertig Status 
Datum: 13:11 So 22.06.2008
Autor: Infinit

Hallo Haploid,
egal, welche ganzzahligen Werte Du für n und m einsetzt, es kommt immer ein ganzzahliges Vielfaches von Pi dabei heraus. Und der Sinus von solch einem Wert ist nunmal Null.
Viele Grüße,
Infinit

Bezug
                                                
Bezug
Integralberechnung über Sinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 So 22.06.2008
Autor: haploid

Da hab ich mal wieder den Wald vor lauter Bäumen nicht gesehen! danke schön!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]