matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralberechnung/Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integralberechnung/Beweis
Integralberechnung/Beweis < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung/Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 So 13.04.2014
Autor: Magehex

Aufgabe
http://abload.de/img/aufgabenhqiu7.jpg

Hallo, nächste Woche ist es wieder an der Zeit ein paar Übungsaufgaben abzugeben.
Ich hänge gerade bei ein paar Aufgaben fest.

Aufgabe 1.2

Ich dachte mir ich löse diese Aufgabe mit partieller Integration. Doch dann bekomme ich als Ergebnis -1+-1+-1+-1..., d.h. das Ergebnis bei mir wäre [mm] -\infty [/mm]

[mm] \integral_{a}^{b} xf(x)f'(x)\, [/mm] dx Also partielle Integration
[f(x)f(x)x] - [mm] \integral_{a}^{b} f(x)*(f(x)+xf'(x))\, [/mm] dx
= [f(b)f(b)b - f(a)f(a)a] - ( [mm] \integral_{a}^{b} f(x)f(x)\, [/mm] dx + [mm] \integral_{a}^{b} xf'(x)*f(x)\, [/mm] dx)
da f(a) und f(b) = 0 und Integral f²(x)=1
= 0 - 1 + [mm] \integral_{a}^{b} xf'(x)*f(x)\, [/mm] dx
somit (0 - 1) + (0 - 1)... = [mm] \sum_{k=0}^{\infty} [/mm] -1 = [mm] -\infty [/mm]

Das glaub ich fast nicht, dass das richtig ist. Wo ist mein Fehler?

Aufgabe 1.4
a) [mm] \integral f(x)*1\, [/mm] dx
Mit partieller Integration:
xf(x)- [mm] \integral f'(x)x\, [/mm] dx

b) Hier weiß ich nichtmal einen Ansatz

Aufgabe 1.5
Hier bekomme ich [mm] \pi/2 [/mm] als Ergebnis. Stimmt das?


Vielen Dank für eure Hilfe.
Magehex




        
Bezug
Integralberechnung/Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 13.04.2014
Autor: Sax

Hi,



>  
> [mm]\integral_{a}^{b} xf(x)f'(x)\,[/mm] dx Also partielle
> Integration
>  [f(x)f(x)x] - [mm]\integral_{a}^{b} f(x)*(f(x)+xf'(x))\,[/mm] dx
>  = [f(b)f(b)b - f(a)f(a)a] - ( [mm]\integral_{a}^{b} f(x)f(x)\,[/mm]
> dx + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx)
>  da f(a) und f(b) = 0 und Integral f²(x)=1
>  = 0 - 1 + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx

beachte  -(a+b) = -a-b  !

>  somit (0 - 1) + (0 - 1)... = [mm]\sum_{k=0}^{\infty}[/mm] -1 =
> [mm]-\infty[/mm]
>  
> Das glaub ich fast nicht, dass das richtig ist. Wo ist mein
> Fehler?
>  
> Aufgabe 1.4
>  a) [mm]\integral f(x)*1\,[/mm] dx
>  Mit partieller Integration:
>  xf(x)- [mm]\integral f'(x)x\,[/mm] dx
>  
> b) Hier weiß ich nichtmal einen Ansatz

Benutze das Ergebnis von Teil a. und zeige den Rest durch Substitution x=g(y).


>  
> Aufgabe 1.5
>  Hier bekomme ich [mm]\pi/2[/mm] als Ergebnis. Stimmt das?
>  
>

Ja, das stimmt.


Bezug
                
Bezug
Integralberechnung/Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 13.04.2014
Autor: Magehex


> > [mm]\integral_{a}^{b} xf(x)f'(x)\,[/mm] dx Also partielle
> > Integration
>  >  [f(x)f(x)x] - [mm]\integral_{a}^{b} f(x)*(f(x)+xf'(x))\,[/mm]
> dx
>  >  = [f(b)f(b)b - f(a)f(a)a] - ( [mm]\integral_{a}^{b} f(x)f(x)\,[/mm]
> > dx + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx)
>  >  da f(a) und f(b) = 0 und Integral f²(x)=1
>  >  = 0 - 1 + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx
>  
> beachte  -(a+b) = -a-b  !

Ach ja, deswegen kam bei mir beim ersten Mal 0 raus, da es eine alternierende Reihe ist und sich die Summen gegenseitig kürzen. Den Fehler hab ich dann erst beim 2-ten mal reingebracht. Aber stimmt das? Ist 0 wirklich das Ergebnis?


> > Aufgabe 1.4
>  >  a) [mm]\integral f(x)*1\,[/mm] dx
>  >  Mit partieller Integration:
>  >  xf(x)- [mm]\integral f'(x)x\,[/mm] dx
>  >  
> > b) Hier weiß ich nichtmal einen Ansatz
>  
> Benutze das Ergebnis von Teil a. und zeige den Rest durch
> Substitution x=g(y).

Das leuchtet mir ein. Allerdings hab ich gerade Schwierigkeiten mit der Substitution.


[mm] \integral_{f(a)}^{f(b)} f(x)\,dx [/mm] = bf(b)-af(a) - [mm] \integral_{f(a)}^{f(b)} xf'(x)\,dx [/mm]

[xf(x)] - [mm] \integral_{f(a)}^{f(b)} xf'(x)\,dx [/mm]
x=g(y)
bf(b)-af(a) - [mm] \integral_{f(a)}^{f(b)} g(y)f'(g(y))\,dx [/mm]
Jetzt komm ich aber bei dem Integral auch nicht weiter?



Bezug
                        
Bezug
Integralberechnung/Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 So 13.04.2014
Autor: Sax

Hi,

> > > [mm]\integral_{a}^{b} xf(x)f'(x)\,[/mm] dx Also partielle
> > > Integration
>  >  >  [f(x)f(x)x] - [mm]\integral_{a}^{b} f(x)*(f(x)+xf'(x))\,[/mm]
> > dx
>  >  >  = [f(b)f(b)b - f(a)f(a)a] - ( [mm]\integral_{a}^{b} f(x)f(x)\,[/mm]
> > > dx + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx)
>  >  >  da f(a) und f(b) = 0 und Integral f²(x)=1
>  >  >  = 0 - 1 + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx
>  >  
> > beachte  -(a+b) = -a-b  !
>  
> Ach ja, deswegen kam bei mir beim ersten Mal 0 raus, da es
> eine alternierende Reihe ist und sich die Summen
> gegenseitig kürzen. Den Fehler hab ich dann erst beim
> 2-ten mal reingebracht. Aber stimmt das? Ist 0 wirklich das
> Ergebnis?

Nein.
I = 1 - I  ergibt  I = 1/2.

>  
>
> > > Aufgabe 1.4
>  >  >  a) [mm]\integral f(x)*1\,[/mm] dx
>  >  >  Mit partieller Integration:
>  >  >  xf(x)- [mm]\integral f'(x)x\,[/mm] dx
>  >  >  
> > > b) Hier weiß ich nichtmal einen Ansatz
>  >  
> > Benutze das Ergebnis von Teil a. und zeige den Rest durch
> > Substitution x=g(y).
>  
> Das leuchtet mir ein. Allerdings hab ich gerade
> Schwierigkeiten mit der Substitution.
>  

Die Integrationsgrenzen der folgenden Zeilen müssen a und b sein !

>
> [mm]\integral_{f(a)}^{f(b)} f(x)\,dx[/mm] = bf(b)-af(a) -
> [mm]\integral_{f(a)}^{f(b)} xf'(x)\,dx[/mm]
>  
> [xf(x)] - [mm]\integral_{f(a)}^{f(b)} xf'(x)\,dx[/mm]
>  x=g(y)
>  bf(b)-af(a) - [mm]\integral_{f(a)}^{f(b)} g(y)f'(g(y))\,dx[/mm]
>  
> Jetzt komm ich aber bei dem Integral auch nicht weiter?
>  
>  

[mm] \integral_{f(a)}^{f(b)}{g(y) dy} [/mm] = [  g(y)=x , y=f(x) , dy = f'(x) dx ] = [mm] \integral_{a}^{b}{x*f'(x) dx} [/mm]

Gruß Sax.

Bezug
                                
Bezug
Integralberechnung/Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 So 13.04.2014
Autor: Magehex


>  >  >  >  = 0 - 1 + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx
>  >  >  
> > > beachte  -(a+b) = -a-b  !
> Nein.
>  I = 1 - I  ergibt  I = 1/2.

Aber es ist doch -1? Müsste das Ergebnis dann nicht I=-1-I <=> I=-1/2 sein?


> [mm]\integral_{f(a)}^{f(b)}{g(y) dy}[/mm] = [  g(y)=x , y=f(x) , dy
> = f'(x) dx ] = [mm]\integral_{a}^{b}{x*f'(x) dx}[/mm]
>  
> Gruß Sax.

Ich hab versucht deine Lösung nachzuvollziehen, kann es aber nicht.
Ich verstehe nicht was du mit dem g(y)=x machst.
Wenn ich das Substituiere:
[mm] \integral_{a}^{b}{g(y) dy} [/mm]
x=g(y)
dx/dy = g'(y) <=> dy=dx/g'(y)
[mm] \integral_{a}^{b}{x*dx/g'(y)} [/mm]
da ist schon wieder so ein Faktor der sich nicht kürzt, ich kann das nicht integrieren.

Sorry ich verstehs gerade überhaupt nicht.

Vielen dank für deine Hilfe.







Bezug
                                        
Bezug
Integralberechnung/Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 So 13.04.2014
Autor: DieAcht

Hallo,


> >  >  >  >  = 0 - 1 + [mm]\integral_{a}^{b} xf'(x)*f(x)\,[/mm] dx

>  >  >  >  
> > > > beachte  -(a+b) = -a-b  !
>  > Nein.

>  >  I = 1 - I  ergibt  I = 1/2.
>  
> Aber es ist doch -1? Müsste das Ergebnis dann nicht I=-1-I
> <=> I=-1/2 sein?

Ja. Sax hat sich nur vertippt, aber das macht hier nichts. :-)


Gruß
DieAcht

Bezug
                                        
Bezug
Integralberechnung/Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 So 13.04.2014
Autor: Sax

Hi,

> Ich hab versucht deine Lösung nachzuvollziehen, kann es aber nicht.
> Ich verstehe nicht was du mit dem g(y)=x machst.
> Wenn ich das Substituiere:
> $ [mm] \integral_{a}^{b}{g(y) dy} [/mm] $

Hier sind die Integrationsgrenzen f(a) und f(b)

> x=g(y)
> dx/dy = g'(y) <=> dy=dx/g'(y)
> $ [mm] \integral_{a}^{b}{x\cdot{}dx/g'(y)} [/mm] $
> da ist schon wieder so ein Faktor der sich nicht kürzt, ich kann das nicht
> integrieren.

Beachte  [mm] \bruch{1}{g'(y)}=f'(x) [/mm]

Gruß Sax.

Bezug
                                                
Bezug
Integralberechnung/Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:05 So 13.04.2014
Autor: Magehex


> Hi,
>  
> > Ich hab versucht deine Lösung nachzuvollziehen, kann es
> aber nicht.
>  > Ich verstehe nicht was du mit dem g(y)=x machst.

>  > Wenn ich das Substituiere:

>  > [mm]\integral_{a}^{b}{g(y) dy}[/mm]

>  
> Hier sind die Integrationsgrenzen f(a) und f(b)
>  
> > x=g(y)
>  > dx/dy = g'(y) <=> dy=dx/g'(y)

>  > [mm]\integral_{a}^{b}{x\cdot{}dx/g'(y)}[/mm]

>  > da ist schon wieder so ein Faktor der sich nicht kürzt,

> ich kann das nicht
> > integrieren.
>
> Beachte  [mm]\bruch{1}{g'(y)}=f'(x)[/mm]
>  
> Gruß Sax.

Ja stimmt an das hab ich nicht gedacht.
Aber dennoch bringt es mich nicht weiter.
Ich hab jetzt also
bf(b)-af(a) - [mm] \integral_{a}^{b}{xf'(x)dx} [/mm]
wie soll ich jetzt nach y=f(x) substituieren, wenn kein y mehr vorhanden ist?
Oder kann ich dass hier dann einfach ersetzen?
Also einfach nur anstelle der Parameter x,f(x),f'(x)dx schreibe ich g(y),y,dy?
x=g(y), y=f(x), dy=f'(x)dx

[mm] \integral_{a}^{b}{g(y)dy} [/mm]

Bei x=g(y) ists mir vielleicht noch klar, da ich das vorher substituiert habe und nun rücksubstituiere.
Gehe ich bei dem y rückwärts vor, was auch erlaubt ist? Normalerweise beginne ich mit y=... und hier würde ich rückwärts gehen, da ich mit dy... beginne?
Und darf ich dann einfach so aus der Ober und Untergrenze [a,b] ein [f(a),f(b)] machen?

Bezug
                                                        
Bezug
Integralberechnung/Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 15.04.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]